cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A387713 Nonprimitive terms of A387711: numbers k for which A387715(k) > 1.

Original entry on oeis.org

8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 54, 56, 60, 64, 68, 72, 76, 80, 81, 84, 88, 90, 92, 96, 100, 104, 108, 112, 116, 120, 124, 126, 128, 132, 135, 136, 140, 144, 148, 150, 152, 156, 160, 162, 164, 168, 172, 176, 180, 184, 188, 189, 192, 196, 198, 200, 204, 208, 210, 212, 216, 220, 224, 225, 228, 232, 234
Offset: 1

Views

Author

Antti Karttunen, Sep 06 2025

Keywords

Crossrefs

Cf. A003959.
Setwise difference A387711 \ A387712. Positions of terms > 1 in A387715.
Subsequence of A341610.

Programs

Formula

{k | A387715(k) > 1}.

A387710 Numbers k for which A003959(k) < 2*k, where A003959 is multiplicative with a(p^e) = (p+1)^e.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 75, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 98, 99, 101, 103, 105, 106, 107, 109, 110, 111, 113, 115, 117, 118, 119, 121, 122, 123, 125
Offset: 1

Views

Author

Antti Karttunen, Sep 06 2025

Keywords

Crossrefs

Subsequence of A005100.
Subsequences: A000040, A001358\{4, 6}, A246281.
Positions of 0's in A387715.

Programs

  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    is_A387710(n) = (A003959(n)<(2*n));

A387711 Numbers k for which A003959(k) > 2*k, where A003959 is multiplicative with a(p^e) = (p+1)^e.

Original entry on oeis.org

4, 8, 12, 16, 18, 20, 24, 27, 28, 30, 32, 36, 40, 42, 44, 45, 48, 50, 52, 54, 56, 60, 63, 64, 66, 68, 70, 72, 76, 78, 80, 81, 84, 88, 90, 92, 96, 100, 102, 104, 108, 112, 114, 116, 120, 124, 126, 128, 132, 135, 136, 138, 140, 144, 148, 150, 152, 156, 160, 162, 164, 168, 172, 174, 176, 180, 184, 186, 188, 189, 192, 196
Offset: 1

Views

Author

Antti Karttunen, Sep 06 2025

Keywords

Crossrefs

Disjoint union of A387712 and A387713. Positions of nonzero terms in A387715.
Subsequence of A005101, and of A246282.
After the initial 4 also a subsequence of A033942.

Programs

  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    is_A387711(n) = (A003959(n)>(2*n));

A387712 Primitive terms of A387711: numbers k for which A003959(k) > 2*k, but for all whose proper divisors d|k, dA003959(d) <= 2*d.

Original entry on oeis.org

4, 18, 27, 30, 42, 45, 50, 63, 66, 70, 78, 102, 114, 138, 174, 186, 222, 246, 258, 282, 318, 354, 366, 375, 402, 426, 438, 474, 498, 525, 534, 582, 606, 618, 625, 642, 654, 678, 686, 735, 762, 786, 822, 825, 834, 894, 906, 942, 975, 978, 1002, 1038, 1074, 1078, 1086, 1089, 1146, 1158, 1182, 1194, 1210, 1266, 1274, 1275
Offset: 1

Views

Author

Antti Karttunen, Sep 06 2025

Keywords

Crossrefs

Positions of 1's in A387715.
Cf. also A091191, A337372.

Programs

Formula

{k | A387715(k) == 1}.

A387725 Number of unitary divisors d of n for which A107758(d) > 2*d, where A107758 is sigma+, multiplicative function with a(p^e) = 1+sigma(p^e).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 4, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 4, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 4, 0, 1, 0, 0, 0, 3, 0, 1, 0, 3, 0, 1, 0, 1, 1, 1, 0, 3, 0, 1, 0, 1, 0, 4, 0, 1, 0, 1, 0, 4, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 3, 0, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Sep 06 2025

Keywords

Crossrefs

Cf. A107758, A387721 (positions of positive terms).
Cf. also A387715, A337345.

Programs

  • PARI
    A107758(n) =  { my(f = factor(n)); prod(k=1, #f~, 1+sigma(f[k, 1]^f[k, 2])); };
    A387725(n) = sumdiv(n,d,(1==gcd(d,n/d)) && (A107758(d)>(2*d)));

Formula

a(n) = Sum_{d|n} [gcd(d,n/d)==1 and A107758(d) > 2*d], where [ ] is the Iverson bracket.
Showing 1-5 of 5 results.