cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A381468 Number of simple connected graphs on n unlabeled nodes with no node a member of more than one cycle.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 20, 48, 133, 374, 1124, 3439, 10923, 35245, 116128, 387729, 1312038, 4485906, 15486546, 53900520, 188998450, 667062919, 2368440477, 8454560144, 30328595227, 109285433191, 395425965732, 1436219868659, 5234881134074, 19143123415166, 70216752517419
Offset: 0

Views

Author

Andrew Howroyd, Feb 24 2025

Keywords

Comments

All such graphs are cactus graphs (with bridges allowed).

Crossrefs

Row sums of A381467.
Cf. A000083, A317722 (with 2-cycles), A380632, A380805.

Programs

  • PARI
    Vec(G(31,1)) \\ G() defined in A381467.

A035351 Number of labeled rooted polygonal cacti with bridges (mixed Husimi trees) with n nodes.

Original entry on oeis.org

1, 2, 12, 124, 1810, 34056, 783874, 21331136, 669902076, 23845794400, 948733833256, 41721533664768, 2009539243299328, 105209055401980544, 5948937678563109000, 361296961279074942976, 23456120142707873968336, 1621073894248128387746304
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1998

Keywords

Crossrefs

Programs

  • Maple
    A:= proc(n) option remember; if n<=0 then x else x* exp((2*A(n-1) -A(n-1)^2)/ (2-2*A(n-1))) fi end: a:= n-> coeff(series(A(n-1), x=0,n+1), x,n)*n!: seq(a(n), n=1..20); # Alois P. Heinz, Aug 20 2008
  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x/E^(((x-2)*x)/(2*(x-1))),{x,0,20}],x],x] * Range[0,20]!] (* Vaclav Kotesovec, Jan 08 2014 *)

Formula

E.g.f. satisfies A(x) = x*exp((2*A(x)-A(x)^2)/(2-2*A(x))).
a(n) ~ (1-s)^2 * sqrt(2/((2-s)*(1+s-s^2))) * n^(n-1) / (s * exp((2+(s-4)*s)/(2-2*s)))^n, where s = 1/3*(4-2/(-17+3*sqrt(33))^(1/3) + (-17+3*sqrt(33))^(1/3)) = 0.456310987307923638429144... is the root of the equation 6*s - 4*s^2 + s^3 = 2. - Vaclav Kotesovec, Jan 08 2014

Extensions

More terms from Alois P. Heinz, Aug 20 2008

A381470 Number of simple connected graphs on n unlabeled nodes with exactly 2 non-overlapping cycles.

Original entry on oeis.org

1, 4, 21, 85, 345, 1289, 4713, 16622, 57535, 195212, 653318, 2158866, 7063333, 22906699, 73742762, 235863378, 750187968, 2374249283, 7481414941, 23482536967, 73449564533, 229016163367, 712044375528, 2208131225648, 6831543467752, 21089958138852, 64978894444220
Offset: 6

Views

Author

Andrew Howroyd, Feb 25 2025

Keywords

Comments

All such graphs are cactus graphs (with bridges allowed).

Examples

			The a(6) = 1 graph is:
    o       o
   / \     / \
  o---o---o---o
.
The a(7) = 4 graphs are:
    o     o---o     o   o   o       o---o   o       o   o   o
   / \    |   |    / \ / \ / \     / \     / \     / \ /   / \
  o---o---o---o   o---o   o---o   o---o---o---o   o---o---o---o
		

Crossrefs

Column k=2 of A381467.

Programs

  • PARI
    \\ TreeGf gives gf of A000081.
    TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    seq(n)={my(t=TreeGf(n), t2=subst(t,x,x^2), g=t*(t^2/(1-t) + t2*(1+t)/(1-t2))/2, g2=subst(g,x,x^2)); Vec(g^2/(1-t) + g2*(1+t)/(1-t2))/2}

A035352 Number of increasing rooted polygonal cacti with bridges (mixed Husimi trees) with n nodes.

Original entry on oeis.org

1, 1, 3, 16, 122, 1203, 14518, 207061, 3406083, 63465271, 1320938774, 30371545338, 764447981599, 20904838435264, 617151430504113, 19561785238965715, 662583041367287249, 23882958184429006800, 912777131398463190802, 36868849734952579404745
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1998

Keywords

Comments

Limit n->infinity (a(n)/n!)^(1/n) = 2.168573... - Vaclav Kotesovec, Feb 28 2014

Crossrefs

Programs

  • Maple
    Ap:= proc(n) option remember; local A, f; if n<=0 then f:=1 else A:= Int(Ap(n-1),x); f:= exp((2*A -A^2)/ (2-2*A)) fi; convert(series(f, x, n+1), polynom) end: a:= n-> coeff(series(Ap(n-1), x=0,n), x,n-1)*(n-1)!: seq(a(n), n=1..30); # Alois P. Heinz, Aug 20 2008
  • Mathematica
    Ap[n_] := Ap[n] = Module[{A, f}, If[n <= 0, f=1, A = Integrate[Ap[n-1], x]; f = Exp[(2*A-A^2)/(2-2*A)]]; Series[f, {x, 0, n+1}] // Normal]; a[n_] := SeriesCoefficient[Ap[n-1], {x, 0, n-1}]*(n-1)!; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 24 2016, after Alois P. Heinz *)

Formula

E.g.f. satisfies A'(x) = exp((2*A(x)-A(x)^2)/(2-2*A(x))).

Extensions

a(18) corrected by Alois P. Heinz, Aug 20 2008

A035354 "DHK" (bracelet, identity, unlabeled) transform of A035353.

Original entry on oeis.org

1, 1, 1, 2, 4, 11, 33, 103, 330, 1077, 3556, 11895, 40187, 137049, 471070, 1630819, 5680854, 19899698, 70053093, 247711242, 879441789, 3133648932, 11202930544, 40172365842, 144453506494, 520759972064, 1881787195944, 6814766134276
Offset: 0

Views

Author

Christian G. Bower, Nov 15 1998

Keywords

Crossrefs

A035355 "BHK" (reversible, identity, unlabeled) transform of A035353.

Original entry on oeis.org

1, 1, 1, 2, 5, 15, 44, 140, 442, 1443, 4751, 15903, 53716, 183334, 630513, 2184417, 7614318, 26690344, 94015908, 332639104, 1181596784, 4212424485, 15066677338, 54050993664, 194438337125, 701224890628, 2534810109024
Offset: 0

Views

Author

Christian G. Bower, Nov 15 1998

Keywords

Crossrefs

A035356 Number of asymmetric polygonal cacti with bridges (mixed Husimi trees).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 1, 4, 13, 45, 143, 461, 1470, 4747, 15364, 50283, 165549, 549734, 1837539, 6184589, 20938983, 71297174, 244009225, 839101403, 2898145437, 10050549437, 34985611467, 122209803101, 428285696895, 1505491979826
Offset: 0

Views

Author

Christian G. Bower, Nov 15 1998

Keywords

Crossrefs

Formula

G.f.: A(x) = B(x) + C(x) - B(x)*D(x), where B, C, D respectively are g.f.s of A035353, A035354, A035355.
Previous Showing 11-17 of 17 results.