cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-43 of 43 results.

A260229 a(n) = floor(e^(n!)).

Original entry on oeis.org

2, 7, 403, 26489122129, 13041808783936322797338790280986488113446079415755132
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 20 2015

Keywords

Comments

The exponential growth in the number of permutations of n elements.
Next term is too big to be included.

Examples

			a(1) = floor(e^(1!)) = floor(e) = 2.
		

Crossrefs

Programs

  • Mathematica
    Table[Floor[E^n!], {n, 1, 7}]
  • PARI
    default(realprecision, 100); vector(5, n, floor(exp(n!))) \\ Michel Marcus, Aug 06 2015

Formula

a(n) = A000149(A000142(n)).
a(n) = floor(sqrt(e^A052849(n) - e^A000142(n) + sqrt(e^A052849(n) - e^A000142(n) + sqrt(e^A052849(n) - e^A000142(n) + ...)))).

A362006 a(n) is the minimum integer m such that floor(e^n) = floor(Sum_{k=0..m} (n^k)/(k!)).

Original entry on oeis.org

0, 1, 4, 8, 9, 12, 15, 17, 19, 24, 25, 29, 30, 34, 37, 39, 41, 44, 48, 49, 52, 55, 59, 61, 62, 66, 68, 70, 74, 79, 79, 82, 84, 89, 89, 92, 96, 98, 102, 103, 106, 110, 112, 114, 116, 122, 124, 126, 128, 132, 133, 137, 138, 141, 144, 147, 151, 152, 154, 158, 161
Offset: 0

Views

Author

Luca Onnis, Apr 03 2023

Keywords

Comments

Conjecture: a(n) ~ e*n as n->infinity.
Conjecture: a(n) <= 3n for all n.
The second one would imply: A000149(n) = floor(Sum_{k=0..3n} (n^k)/(k!)).

Examples

			a(3) = 8 since floor(e^3) = 20, floor(Sum_{k=0..8} (n^k)/(k!)) = 20 and "8" is the minimum because floor(Sum_{k=0..7} (n^k)/(k!)) = 19.
		

Crossrefs

Cf. A000149.

Programs

  • Mathematica
    f[n_, m_] := Floor[Sum[(n^k)/(k!), {k, 0, m}]] - Floor[E^n];
    a[n_] := Min[Flatten[Position[Table[f[n, m], {m, 0, 150}], 0]]] - 1;
    Table[a[n], {n, 1, 50}]
  • PARI
    a(n) = my(m=0, x=floor(exp(n)), y=1); while(floor(y) != x, m++; y += n^m/m!); m; \\ Michel Marcus, Apr 14 2023

A373112 Number of binary digits in the integer part of e^n.

Original entry on oeis.org

2, 3, 5, 6, 8, 9, 11, 12, 13, 15, 16, 18, 19, 21, 22, 24, 25, 26, 28, 29, 31, 32, 34, 35, 37, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51, 52, 54, 55, 57, 58, 60, 61, 63, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 91, 93, 94, 96, 97, 99, 100, 101, 103, 104
Offset: 1

Views

Author

Byron Avery, May 25 2024

Keywords

Examples

			e^10 = 22026.46579480671... 22026 in binary is 101011000001010 so a(10)=15.
		

Crossrefs

Cf. A000149, A070939, A254528 (in decimal).

Formula

a(n) = floor(log_2(floor(e^n))) + 1.
a(n) = A070939(A000149(n)). - Michel Marcus, May 26 2024
Previous Showing 41-43 of 43 results.