cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A166947 Number of ways of writing n as the sum of 2^n squares.

Original entry on oeis.org

1, 4, 24, 448, 29152, 6448000, 4799359488, 12099984537600, 104875315518635520, 3178565207840143938560, 342288453932192597037125632, 132776310046929259464457969090560
Offset: 0

Views

Author

Paul D. Hanna, Oct 25 2009

Keywords

Examples

			G.f.: A(x) = 1 + 4*x + 24*x^2 + 448*x^3 + 29152*x^4 + 6448000*x^5 +...
Let F(x) = theta_3(x) = 1 + 2*Sum_{n>=1} x^(n^2),
then A(x) = 1 + log(F(2*x)) + log(F(4*x))^2/2! + log(F(8*x))^3/3! + ...
Illustrate a(n) = [x^n] F(x)^(2^n) by forming a table of
coefficients in powers F(x)^(2^n), which begin:
F^(2^0): [(1), 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, ...];
F^(2^1): [1, (4), 4, 0, 4, 8, 0, 0, 4, 4, 8, 0, 0, 8, 0, 0, ...];
F^(2^2): [1, 8, (24), 32, 24, 48, 96, 64, 24, 104, 144, 96, ...];
F^(2^3): [1, 16, 112, (448), 1136, 2016, 3136, 5504, 9328, ...];
F^(2^4): [1, 32, 480, 4480, (29152), 140736, 525952, 1580800, ...];
F^(2^5): [1, 64, 1984, 39680, 575424, (6448000), 58115328, ...];
F^(2^6): [1, 128, 8064, 333312, 10166144, 244000512, (4799359488), ...];
F^(2^7): [1, 256, 32512, 2731008, 170688256, 8466189824, 347119309824, (12099984537600), ...]; ...
and noting that the coefficients along the diagonal (in parenthesis)
form the initial terms of this sequence.
		

Crossrefs

Cf. variant: A166953 (n as the sum of 3^n squares). [From Paul D. Hanna, Oct 26 2009]

Programs

  • PARI
    {a(n)=local(THETA3=1+2*sum(k=1,sqrtint(n),x^(k^2))+x*O(x^n));polcoeff(THETA3^(2^n),n)}
    
  • PARI
    {a(n)=local(THETA3=1+2*sum(k=1,sqrtint(n),x^(k^2))+x*O(x^n)); polcoeff(sum(k=0,n,log(subst(THETA3,x,2^k*x))^k/k!),n)}

Formula

a(n) equals the coefficient of x^n in the (2^n)-th power of Jacobi theta_3(x).
G.f.: A(x) = Sum_{n>=0} log( theta_3(2^n*x) )^n/n! where theta_3(x) = 1 + 2*Sum_{n>=1} x^(n^2).

A193354 Triangle read by rows: T(n,k) = (-1)^(n-k) * r16(n-k) * 2^(3*b(k)) * sigma_3(O(k)), for k=1 to n, for n>=1 (see comments for terms used).

Original entry on oeis.org

1, -32, 8, 480, -256, 28, -4480, 3840, -896, 64, 29152, -35840, 13440, -2048, 126, -140736, 233216, -125440, 30720, -4032, 224, 525952, -1125888, 816256, -286720, 60480, -7168, 344, -1580800, 4207616, -3940608, 1865728, -564480, 107520, -11008, 512
Offset: 1

Views

Author

Michel Marcus, Dec 20 2012

Keywords

Comments

Functions used in name: r16(n) is A000152(n), O(n) is A000265(n), b(n) is A007814(n).

Examples

			Triangle starts:
  1: 1
  2: -32, 8
  3: 480, -256, 28
  4: -4480, 3840, -896, 64
  5: 29152, -35840, 13440, -2048, 126
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Module[{e = IntegerExponent[k, 2]}, (-1)^(n - k) * SquaresR[16, n - k]*2^(3*e)*DivisorSigma[3, k/2^e]]; Table[T[n, k], {n, 1, 8}, {k, 1, n}] // Flatten (* Amiram Eldar, Jan 06 2025 *)

Formula

For n>=1, Sum_{k=1, n} a(k) = A000594(n).
Previous Showing 11-12 of 12 results.