A225623
Number of ways to arrange 2n queens on an n X n chessboard, with no more than 2 queens in each row, column or diagonal.
Original entry on oeis.org
0, 1, 2, 11, 92, 1097, 19448, 477136, 14244856, 537809179, 24194010708, 1317062528249
Offset: 1
A225740
Number of arrangements of n nonattacking Queens on an n X n board, with no Queens on both main diagonals.
Original entry on oeis.org
0, 0, 0, 2, 0, 4, 0, 12, 8, 12, 64, 760, 2080, 11524, 77672, 454376, 2972720, 19274208, 160500016, 1150812148, 9797154696, 79646705916, 771589104392
Offset: 1
From _Martin Ehrenstein_, Jan 10 2022: (Start)
Solutions for n=9 filtered from the Coserea link in A000170:
3 5 8 2 9 7 1 4 6
3 6 9 2 8 1 4 7 5
4 6 9 3 1 8 2 5 7
5 3 6 9 2 8 1 4 7
5 7 4 1 8 2 9 6 3
6 4 1 7 9 2 8 5 3
7 4 1 8 2 9 6 3 5
7 5 2 8 1 3 9 6 4
(End)
A352325
Number of ways of placing A352241(n) nonattacking black-square queens on an n X n board.
Original entry on oeis.org
1, 2, 5, 6, 8, 6, 10, 112, 104, 80, 40, 36, 2172, 1414, 984, 384, 240, 70396, 39400, 22468, 3696, 1152, 4457616, 2246138, 1060976, 185932
Offset: 1
A375103
Number of ways of placing the maximum number of nonattacking queens on a 3-dimensional chessboard of order n.
Original entry on oeis.org
1, 8, 16, 1344, 1056, 912, 96, 24
Offset: 1
A375104
Number of ways of placing the maximum number of nonattacking queens on a 4-dimensional chessboard of order n.
Original entry on oeis.org
1, 16, 4992, 404564
Offset: 1
A375800
Number of ways of placing 2n nonattacking rooks on a hexagonal board of equilateral triangular spaces with n spaces along each edge.
Original entry on oeis.org
3, 24, 348, 7812, 255756, 11747504, 714121392
Offset: 1
For n = 2, the a(2) = 24 arrangements are rotations and reflections of:
o---o---o o---o---o o---o---o
/X\ / \ / \ /X\ / \ / \ /X\ / \ / \
o---o---o---o o---o---o---o o---o---o---o
/ \ / \ /X\ / \ / \ / \ / \X/ \ / \ / \ / \X/ \
o---o---o---o---o o---o---o---o---o o---o---o---o---o
\ / \ / \ / \X/ \ / \ / \ /X\ / \ /X\ / \ / \ /
o---o---o---o o---o---o---o o---o---o---o
\X/ \ / \ / \X/ \ / \ / \ / \ / \X/
o---o---o o---o---o o---o---o
(12 symmetries) (6 symmetries) (6 symmetries)
For n = 2, the a(2) = 24 matrices counted are:
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
2 3 4 1 2 3 4 1 2 4 1 3 2 4 3 1
4 2 1 3 4 3 1 2 4 2 3 1 4 1 2 3
-
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
2 4 3 1 3 1 4 2 3 2 4 1 3 2 4 1
4 2 1 3 3 4 1 2 3 4 1 2 4 3 1 2
-
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
3 4 1 2 3 4 1 2 3 4 2 1 3 4 2 1
4 1 3 2 4 2 3 1 4 1 2 3 4 1 3 2
plus the same matrices with rows 2 and 3 interchanged.
A059963
Triangle T(n,k) giving number of ways of placing n nonattacking queens on n X n board with the queen on the first row fixed at column k, 1<=k<=n.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 2, 2, 2, 2, 2, 0, 1, 1, 1, 1, 0, 4, 7, 6, 6, 6, 7, 4, 4, 8, 16, 18, 18, 16, 8, 4, 28, 30, 47, 44, 54, 44, 47, 30, 28, 64, 48, 65, 93, 92, 92, 93, 65, 48, 64, 96, 219, 209, 295, 346, 350, 346, 295, 209, 219, 96, 500, 806, 1165, 1359, 1631, 1639
Offset: 1
Yong Kong (ykong(AT)curagen.com), Mar 03 2001
When n = 8 there are 16 ways to place if the queen on the first row is at the third column
Triangle begins:
1,
0,0,
0,0,0,
0,1,1,0,
2,2,2,2,2,
0,1,1,1,1,0,
4,7,6,6,6,7,4,
4,8,16,18,18,16,8,4,
28,30,47,44,54,44,47,30,28, etc.
Confirmed by Patrick R. GUILLEMIN (patrick.guillemin(AT)etsi.org), who, together with colleagues, has computed the first 21 rows of this triangle, Jan 05 2004
Sep 15 2004: Patrick R. GUILLEMIN (patrick.guillemin(AT)etsi.org), together with colleagues, has computed the 22nd row of this triangle.
A062165
Number of ways of placing n nonattacking (normal) queens on n X n board, solutions similar on the torus count only once.
Original entry on oeis.org
1, 0, 0, 1, 1, 1, 3, 4, 13, 36, 115, 813, 3083, 21001, 131859, 868613
Offset: 1
Updated link that is transferred from people.freenet.de/nQueens to www.nqueens.de
Matthias Engelhardt, Apr 21 2010
A129551
Number of ways to place n+2 queens and 2 pawns on an n X n board so that no two queens attack each other.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 4, 44, 280, 1304, 12452, 105012, 977664, 9239816, 90776620, 897446092
Offset: 1
R. Douglas Chatham (d.chatham(AT)moreheadstate.edu), Apr 20 2007
a(4)=0 because when 6 queens are placed on a 4 X 4 board, at least two queens will be adjacent and therefore mutually attacking.
Comments