cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-57 of 57 results.

A114680 Primes with 65 as smallest positive primitive root.

Original entry on oeis.org

11089681, 12780601, 12937417, 13359361, 14880721, 21843361, 26686081, 36474001, 43208857, 61214471, 62130097, 64723849, 65049889, 68478481, 73237081, 73610881, 74207281, 78489049, 88689001, 95037073, 99589561, 99705769, 100127281, 102215233, 103073041
Offset: 1

Views

Author

Robert G. Wilson v, Dec 21 2005

Keywords

Crossrefs

Programs

  • Mathematica
    (* first load *) << NumberTheory`NumberTheoryFunctions` (* then *) t={}; Do[ If[ PrimitiveRoot[ Prime@n] == 65, AppendTo[t, n]; Print@Prime@n], {n, 5890000}]; Prime@t
    Select[Prime[Range[574*10^4]],PrimitiveRoot[#,1]==65&] (* Harvey P. Dale, Jul 30 2019 *)

Extensions

a(22) and beyond from Robert Price, Nov 20 2023
a(25) corrected by David Radcliffe, Aug 04 2025

A114681 Primes with 66 as smallest positive primitive root.

Original entry on oeis.org

27955201, 30822481, 33776401, 80724841, 111549481, 115129561, 164062081, 260568421, 288955801, 304100161, 348601681, 348990769, 411542401, 446320729, 464872591, 470475121, 473949121, 514613581, 541760881, 544552681, 552269761, 637927201, 652107121, 669037321
Offset: 1

Views

Author

Robert G. Wilson v, Dec 21 2005

Keywords

Crossrefs

Programs

  • Mathematica
    (* first load *) << NumberTheory`NumberTheoryFunctions` (* then *) t={}; Do[ If[ PrimitiveRoot[ Prime@n] == 66, AppendTo[t, n]; Print@Prime@n], {n, 29000000}]; Prime@t

Extensions

a(22)-a(24) from Robert Price, Nov 26 2023

A114682 Primes with 67 as smallest positive primitive root.

Original entry on oeis.org

3384481, 4280329, 4555151, 5334313, 6915191, 7265281, 7586401, 7761121, 9240001, 10483201, 10859689, 11081641, 11314801, 11682889, 12002761, 12426481, 12493321, 14000281, 15210001, 18410831, 19587481, 21475609, 21573191, 21834961, 23025601, 24024289
Offset: 1

Views

Author

Robert G. Wilson v, Dec 21 2005

Keywords

Crossrefs

Programs

  • Mathematica
    (* first load *) << NumberTheory`NumberTheoryFunctions` (* then *) Select[ Prime@Range@1450000, PrimitiveRoot@# == 67 &]
    Select[Prime[Range[1450000]],PrimitiveRoot[#]==67&] (* Harvey P. Dale, Feb 22 2012 *)
  • PARI
    /* The following assumes that znprimroot() returns the smallest primitive root */ is_A114682(n)={ znprimroot(n)==67 }  \\ M. F. Hasler, Feb 22 2012

Formula

Equals { p in A000040 | A001918(p) = 67 }. - M. F. Hasler, Feb 22 2012

Extensions

a(24) and beyond from Robert Price, Nov 20 2023

A114683 Primes with 68 as smallest positive primitive root.

Original entry on oeis.org

3733801, 35507761, 35902441, 43734601, 52704961, 57882691, 60170881, 66434341, 88016041, 102019681, 111554041, 119630281, 145836601, 153955201, 167521201, 170963521, 183145561, 206125921, 210210841, 210912601, 217455001, 245357641, 255934561, 261094201
Offset: 1

Views

Author

Robert G. Wilson v, Dec 21 2005

Keywords

Crossrefs

Programs

  • Mathematica
    (* first load *) << NumberTheory`NumberTheoryFunctions` (* then *) t={}; Do[ If[ PrimitiveRoot[ Prime@n] == 68, AppendTo[t, n]; Print@Prime@n], {n, 13500000}]; Prime@t

Extensions

a(23)-a(24) from Robert Price, Nov 26 2023

A114684 Primes with 69 as smallest positive primitive root.

Original entry on oeis.org

110881, 3236689, 3451009, 7318921, 8180041, 15124201, 20552449, 20753329, 22078681, 22772689, 23048089, 25454521, 32367721, 33937201, 35428511, 37842841, 39070249, 42598609, 47627711, 52920169, 63360361, 69656161, 71472361, 73323721, 77630281, 78504721
Offset: 1

Views

Author

Robert G. Wilson v, Dec 21 2005

Keywords

Crossrefs

Programs

  • Mathematica
    (* first load *) << NumberTheory`NumberTheoryFunctions` (* then *) t={}; Do[ If[ PrimitiveRoot[ Prime@n] == 69, AppendTo[t, n]; Print@Prime@n], {n, 4310000}]; Prime@t

Extensions

a(23) and beyond from Robert Price, Nov 20 2023
a(23) inserted by David Radcliffe, Aug 04 2025

A114685 Primes with 70 as smallest positive primitive root.

Original entry on oeis.org

5620201, 137084401, 261429481, 319917841, 463954921, 490203481, 533231641, 549100081, 574690801, 600595381, 633627721, 644868481, 647913601, 704247361, 713084641, 722120881, 874850161, 916971961, 918152161, 1030871161, 1056236833, 1062355369, 1096459321
Offset: 1

Views

Author

Robert G. Wilson v, Dec 21 2005

Keywords

Crossrefs

Programs

  • Mathematica
    (* first load *) << NumberTheory`NumberTheoryFunctions` (* then *) t={}; Do[ If[ PrimitiveRoot[ Prime@n] == 70, AppendTo[t, n]; Print@Prime@n], {n, 53600000}]; Prime@t
    Select[Prime[Range[524*10^5]],PrimitiveRoot[#,1]==70&] (* Harvey P. Dale, Jun 22 2021 *)

Extensions

a(21)-a(23) from Robert Price, Nov 26 2023

A241046 Primes having primitive roots 2, 3, 5, 7, and 11.

Original entry on oeis.org

173, 293, 677, 2083, 2477, 3533, 3797, 4133, 4157, 4373, 4603, 4637, 5477, 5717, 5923, 6173, 7013, 9173, 9533, 9677, 10853, 11587, 12437, 13037, 13397, 13613, 13877, 14717, 14957, 15077, 15413, 16253, 17093, 17573, 17597, 18413, 18773, 18917, 19157, 19997
Offset: 1

Views

Author

T. D. Noe, Apr 16 2014

Keywords

Crossrefs

Programs

  • Mathematica
    fQ[p_, n_] := MultiplicativeOrder[p, n] == n - 1; Select[Prime[Range[2300]], fQ[2, #] && fQ[3, #] && fQ[5, #] && fQ[7, #] && fQ[11, #] &]
Previous Showing 51-57 of 57 results.