A363910
Triangular array read by rows: T(n,k) = the number of closed meanders with n top arches and k closed meanders in the reduction of the closed meander by the reverse of the exterior arch splitting algorithm.
Original entry on oeis.org
1, 0, 2, 0, 2, 6, 0, 6, 14, 22, 0, 28, 56, 86, 92, 0, 162, 298, 428, 518, 422, 0, 1076, 1868, 2562, 3096, 3144, 2074, 0, 7852, 13076, 17292, 20624, 21990, 19366, 10754
Offset: 1
n\k 1 2 3 4 5 6 7 8
1: 1
2: 0 2
3: 0 2 6
4: 0 6 14 22
5: 0 28 56 86 92
6: 0 162 298 428 518 422
7: 0 1076 1868 2562 3096 3144 2074
8: 0 7852 13076 17292 20624 21990 19366 10754
Closed meander: Closed meander split with bottom rotated right
4 top arches to form top of semi-meander with 8 arches
______ ______
/ ____ \ / ____ \
/ / __ \ \ / / __ \ \ __
/ / / \ \ \ / / / \ \ \ / \
/ / / /\ \ \ \ / / / /\ \ \ \ /\ /\ / /\ \
\ \/ / \/ \/ binary representation of semi-meander
\__/ 1 1 1 1 0 0 0 0 1 0 1 0 1 1 0 0
Semi-meander top arches with no covering center arch = cm
START: center |
Reduction of semi-meander: 1 1 1 1 0 0 0 0 1 0 1 0 1 1 0 0 cm(1)
Combine end of first arch 1 1 1 1 0 0 0 0e 1 0 1 0 1s 1 0 0
Oe with beginning of last 1 1 1 0 0 0 1 1 0 1 0 0 1 0
arch 1s. 0e...1s becomes 1 1 1 0 0 0e 1 1 0 1 0 0 1s 0
1...0 in the next line. The 1 1 0 0 1 1 1 0 1 0 0 0
starting 1 and ending 0 1 1 0 0e 1s 1 1 0 1 0 0 0
are removed in the next line 1 0 1 0 1 1 0 1 0 0
reducing number of arches. 1 0e 1 0 1s 1 0 1 0
by one. 1 1 0 0 1 0 1 0 cm(2)
1 1 0 0e 1 0 1s 0
1 0 1 1 0 0
1 0e 1s 1 0 0
1 0 1 0 cm(3)
Example: T(4,3) 4 starting top arches with 3 closed meanders in history.
A375913
Number of strong (=generic) guillotine rectangulations with n rectangles.
Original entry on oeis.org
1, 2, 6, 24, 114, 606, 3494, 21434, 138100, 926008, 6418576, 45755516, 334117246, 2491317430, 18919957430, 146034939362, 1143606856808, 9072734766636, 72827462660824, 590852491725920, 4840436813758832, 40009072880216344, 333419662183186932, 2799687668599080296
Offset: 1
- Andrei Asinowski, Jean Cardinal, Stefan Felsner, and Éric Fusy, Combinatorics of rectangulations: Old and new bijections, arXiv:2402.01483 [math.CO], 2024, page 37.
- Arturo Merino and Torsten Mütze, Combinatorial generation via permutation languages. III. Rectangulations, Discrete Comput. Geom., 70(1):51-122, 2023. Page 99, Table 3, entry "12".
Cf.
A342141 (number of strong (=generic) rectangulations).
Cf.
A001181 (Baxter numbers: number of weak (=diagonal) rectangulations).
Cf.
A006318 (Schröder numbers: number of weak (=diagonal) guillotine rectangulations).
A375923
Number of permutations of size n which are both two-clumped and co-two-clumped.
Original entry on oeis.org
1, 1, 2, 6, 24, 112, 582, 3272, 19550, 122628, 800392, 5400342, 37475474, 266412680, 1934033968, 14300538652, 107471798112, 819442325086, 6329551390064, 49465665347580, 390692732060804, 3115700976866356, 25067250869113332, 203317147838575616, 1661425311693158000
Offset: 0
Cf.
A342141 (number of two-clumped permutations).
Cf.
A001181 (Baxter numbers: number of (twisted-)Baxter permutations).
Cf.
A348351 (number of permutations which are both twisted-Baxter and co-twisted-Baxter).
A383372
Number of centrally symmetric Baxter permutations of length n.
Original entry on oeis.org
1, 1, 2, 2, 6, 8, 26, 38, 130, 202, 712, 1152, 4144, 6904, 25202, 42926, 158442, 274586, 1022348, 1796636, 6736180, 11974360, 45154320, 81040720, 307069360, 555620080, 2113890560, 3851817920, 14705955008, 26960013552, 103245460226
Offset: 0
The Baxter permutations corresponding to a(4) = 6 are 1234, 1324, 2143, 3412, 4231, and 4321.
- Stefan Felsner, Eric Fusy, Marc Noy, and David Orden, Bijections for Baxter families and related objects, J. Combin. Theory Ser. A, 118(3):993-1020, 2011.
- Kevin Dilks, Involutions on Baxter Objects, arXiv:1402.2961 [math.CO], 2014.
Comments