A360389
The orders of 4-transitive permutation groups.
Original entry on oeis.org
24, 120, 360, 720, 2520, 5040, 7920, 20160, 40320, 95040, 181440, 362880, 1814400, 3628800, 10200960, 19958400, 39916800, 239500800, 244823040, 479001600, 3113510400, 6227020800, 43589145600, 87178291200, 653837184000, 1307674368000
Offset: 1
A321224
Sporadic numbers: n is defined to be sporadic if the set of groups G not in {A_n, S_n} and having a core-free maximal subgroup of index n is nonempty and contains only sporadic simple groups.
Original entry on oeis.org
266, 506, 759, 1045, 1288, 1463, 3795
Offset: 1
- The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.9.3, 2018. gap-system.org.
-
IsSporadic:=function(G)
if not IsSimple(G) then
return false;
else
return IsomorphismTypeInfoFiniteSimpleGroup(G).series="Spor";
fi;
end;;
SporadicNumbers:=function(b1,b2)
local L,i,n,a,j,G;
L:=[];
for i in [b1..b2] do
n:=NrPrimitiveGroups(i);
if n>2 then
a:=0;
for j in [1..n] do
G:=PrimitiveGroup(i,j);
if not G=SymmetricGroup(i) and not G=AlternatingGroup(i) and not IsSporadic(G) then
a:=1;
break;
fi;
od;
if a=0 then
Add(L,i);
fi;
fi;
od;
return L;
end;;
SporadicNumbers(1,4095);
# gives: [ 266, 506, 759, 1045, 1288, 1463, 3795 ]
A329191
The prime divisors of the orders of the sporadic finite simple groups.
Original entry on oeis.org
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 59, 67, 71
Offset: 1
The first term is necessarily 2, by the Feit-Thompson theorem.
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
- R. A. Wilson et al., ATLAS of Finite Group Representations, version 3, Sporadic groups
A379755
Orders k of groups where at least one group has a simple automorphism group.
Original entry on oeis.org
3, 4, 6, 8, 16, 32, 64, 128, 256, 512, 1024
Offset: 1
3 is a term since Aut(C_3) = C_2, which is simple.
8 is a term since Aut(C_2 x C_2 x C_2) = PSL(3,2), which is simple.
7920 is a term since Aut(M_11) = M_11, which is simple. (M_11 is one of the Mathieu groups).
-
A:=[];
for n in [1..100] do
if n>=8 and Unique(Factors(n))=[2] then
A:=Concatenation(A,[n]);
continue;
fi;
for i in [1..NrSmallGroups(n)] do
G:=SmallGroup(n,i);
if IsAbelian(G)=false and Order(Centre(G))>1 then
continue;
fi;
Aut:=AutomorphismGroup(G);
if IsSimpleGroup(Aut)=true then
A:=Concatenation(A,[n]);
break;
fi;
od;
od;
Print(A);
Comments