A336174
Number of non-symmetric binary n X n matrices M over the reals such that M^2 is the transpose of M.
Original entry on oeis.org
0, 0, 0, 2, 16, 80, 360, 1680, 8064, 39872, 209920, 1168640, 6779520, 41403648, 265434624, 1765487360, 12227461120, 88163164160, 656547803136, 5054718763008, 40261284495360, 330010833797120, 2783003768258560, 24166721457815552, 215318925878132736, 1966855934150246400
Offset: 0
a(3) = 2 because [0,1,0] [0,1,0] [0,0,1]
[0,0,1] * [0,0,1] = [1,0,0]
[1,0,0] [1,0,0] [0,1,0],
and [0,0,1] [0,0,1] [0,1,0]
[1,0,0] * [1,0,0] = [0,0,1]
[0,1,0] [0,1,0] [1,0,0].
-
a := n -> 2^n*(add(n!/(24^k*k!*(n-3*k)!), k=0..n/3) - 1): seq(a(n), n=0..25);
# Alternative:
gf := exp(x*(x^2+6)/3) - exp(2*x): ser := series(gf,x,32):
seq(n!*coeff(ser,x,n), n = 0..25); # Peter Luschny, Jun 05 2021
-
m(n, t) = matrix(n, n, i, j, (t>>(i*n+j-n-1))%2)
a(n) = sum(t = 0, 2^n^2-1, m(n, t)^2 == m(n, t)~) - 2^n
for(n = 0, 9, print1(a(n), ", "))
A061122
Number of degree-n permutations of order exactly 8.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 5040, 45360, 453600, 3326400, 39916800, 363242880, 3874590720, 34767532800, 567177811200, 6897521030400, 98241008785920, 1138935652807680, 18952720774041600, 258251731634534400
Offset: 1
A061123
Number of degree-n permutations of order exactly 9.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 40320, 403200, 2217600, 26611200, 259459200, 1695133440, 16345929600, 161902540800, 1208560953600, 50830132953600, 866513503215360, 8470676211379200, 166891791625977600, 2699606616475507200
Offset: 1
A061124
Number of degree-n permutations of order exactly 10.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 504, 4032, 27216, 514080, 4823280, 57081024, 500972472, 4412103696, 60619398840, 686638592640, 9335025764064, 104304736815552, 1180585704051936, 29016515871665280, 478096386437121480
Offset: 1
A061125
Number of degree-n permutations of order exactly 12.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 420, 3360, 30240, 403200, 4019400, 80166240, 965284320, 12173441280, 162850287600, 2428557331200, 32123543612160, 534678700308480, 8126981741380320, 128338880777251200, 2080312367956502400, 36351373041072122880, 606331931399062693440
Offset: 1
-
nn=21;Range[0,nn]!CoefficientList[Series[(Exp[x^12/12]-1)Exp[x+x^2/2+x^3/3+x^4/4+x^6/6]+(Exp[x^6/6]-1)(Exp[x^4/4]-1)Exp[x+x^2/2+x^3/3]+(Exp[x^4/4]-1)(Exp[x^3/3]-1)Exp[x^2/2+x],{x,0,nn}],x]//Rest (* Geoffrey Critzer, Feb 04 2013 *)
A061126
Number of degree-n permutations of order exactly 16.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1307674368000, 22230464256000, 400148356608000, 5068545850368000, 101370917007360000, 1490152480008192000, 24977793950613504000, 343667682838351872000
Offset: 1
A061127
Number of degree-n permutations of order exactly 24.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1663200, 19958400, 259459200, 4843238400, 72648576000, 988020633600, 14600749363200, 224704121241600, 3614691131251200, 84808750650624000, 1509309706083379200, 29359195162807910400
Offset: 1
-
nn=22;Range[0,nn]!CoefficientList[Series[(Exp[x^24/24]-1)Exp[x+x^2/2+x^3/3+x^4/4+x^6/6+x^8/8+x^12/12]+(Exp[x^12/12]-1)(Exp[x^8/8]-1)Exp[x+x^2/2+x^3/3+x^4/4+x^6/6]+(Exp[x^8/8]-1)(Exp[x^6/6]-1)Exp[x+x^2/2+x^3/3+x^4/4]+(Exp[x^8/8]-1)(Exp[x^3/3]-1)Exp[x+x^2/2+x^4/4],{x,0,nn}],x]//Rest (* Geoffrey Critzer, Feb 04 2013 *)
Comments