cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A146485 Decimal expansion of Product_{n>=2} (1 - 1/(n^2*(n-1))).

Original entry on oeis.org

6, 7, 3, 9, 1, 7, 3, 6, 3, 3, 7, 6, 3, 5, 7, 5, 4, 1, 6, 6, 4, 4, 0, 8, 9, 7, 9, 3, 2, 2, 6, 3, 4, 4, 3, 8, 5, 6, 4, 7, 5, 9, 8, 1, 2, 3, 1, 2, 6, 7, 1, 7, 3, 6, 7, 9, 2, 9, 1, 6, 9, 0, 5, 7, 9, 0, 0, 3, 4, 5, 2, 7, 7, 6, 8, 2, 7, 9, 8, 0, 0, 5, 2, 6, 8, 8, 5, 5, 8, 6, 3, 9, 1, 8, 6, 5, 4, 0, 5, 0, 1, 8, 8, 5, 5
Offset: 0

Views

Author

R. J. Mathar, Feb 13 2009

Keywords

Comments

Product of Artin's constant of rank 2 and the equivalent almost-prime products.

Examples

			0.6739173633763... = (1 - 1/4)*(1 - 1/18)*(1 - 1/48)*(1 - 1/100)*...
		

Crossrefs

Cf. A065414.

Programs

  • Maple
    r := 2 : ni := fsolve( (n+1)^r*n-1,n,complex) : 1.0/mul(GAMMA(1-d),d=ni) ; # R. J. Mathar, Feb 20 2009
  • Mathematica
    g[k_] := Gamma[Root[-3 + 8# - 5#^2 + #^3 & , k]]; RealDigits[1/(g[1]*g[2]*g[3]) // Re, 10, 105] // First (* Jean-François Alcover, Feb 12 2013 *)

Formula

The logarithm is -Sum_{s>=2} Sum_{j=1..floor(s/(1+r))} binomial(s-r*j-1, j-1)*(1-Zeta(s))/j at r = 2.
s*Sum_{j=1..floor(s/3)} binomial(s-2j-1, j-1)/j = A001609(s)-1.
Equals 1/Product_{k=1..3} Gamma(1-x_k), where x_k are the 3 roots of the polynomial x*(x+1)^2-1. [R. J. Mathar, Feb 20 2009]

Extensions

More terms from Jean-François Alcover, Feb 12 2013

A218438 G.f.: 1 / ( (1 + x^2 - x^3)^2 * (1 - x - 2*x^2 - x^3) ).

Original entry on oeis.org

1, 1, 1, 6, 12, 19, 48, 110, 218, 470, 1040, 2208, 4710, 10184, 21879, 46879, 100767, 216570, 464952, 998613, 2145312, 4607724, 9896436, 21257196, 45658624, 98068864, 210642412, 452440320, 971794317, 2087314717, 4483345053, 9629771966, 20683772420, 44426659559
Offset: 0

Views

Author

Paul D. Hanna, Oct 28 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 6*x^3 + 12*x^4 + 19*x^5 + 48*x^6 + 110*x^7 +...
where
log(A(x)) = x + x^2/2 + 16*x^3/3 + 25*x^4/4 + 36*x^5/5 + 100*x^6/6 + 225*x^7/7 +...+ A001609(n)^2*x^n/n +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1+x^2-x^3)^2(1-x-2x^2-x^3)),{x,0,40}],x] (* or *) LinearRecurrence[{1,0,5,1,1,-3,-2,0,1},{1,1,1,6,12,19,48,110,218},40] (* Harvey P. Dale, Jan 23 2013 *)
  • PARI
    {a(n)=polcoeff(1/((1 + x^2 - x^3)^2*(1 - x*(1+x)^2+x*O(x^n))),n)}
    for(n=0,40,print1(a(n),", "))

Formula

Logarithmic derivative yields A218439, where A218439(n) = A001609(n)^2.
a(0)=1, a(1)=1, a(2)=1, a(3)=6, a(4)=12, a(5)=19, a(6)=48, a(7)=110, a(8)=218, a(n)=a(n-1)+5*a(n-3)+a(n-4)+a(n-5)-3*a(n-6)-2*a(n-7)+a(n-9). - Harvey P. Dale, Jan 23 2013

A382641 a(n) = round(c^n), where c is the supergolden ratio A092526.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 15, 21, 31, 46, 67, 98, 144, 211, 309, 453, 664, 973, 1426, 2090, 3063, 4489, 6579, 9642, 14131, 20710, 30352, 44483, 65193, 95545, 140028, 205221, 300766, 440794, 646015, 946781, 1387575, 2033590, 2980371, 4367946, 6401536, 9381907, 13749853
Offset: 0

Views

Author

Jwalin Bhatt, Apr 01 2025

Keywords

Crossrefs

Programs

  • Mathematica
    r = Root[x^3-x^2-1, 1]; Table[Round[r^i], {i,0,120 }]
    CoefficientList[Series[(1+x^2+x^4-x^8)/(1-x-x^3), {x,0,120}], x]

Formula

G.f.: (1 + x^2 + x^4 - x^8)/(1 - x - x^3).
a(n) = a(n-1) + a(n-3) for n>=9.
a(n) = round(((2/3)*cos((1/3)*arccos(29/2))+1/3)^n) = round(A092526^n).
a(n) = A001609(n) for n>=6.
Previous Showing 21-23 of 23 results.