cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-36 of 36 results.

A261054 Expansion of ( 2+x-x^2+x^3 ) / (1-x^2-x)^3 .

Original entry on oeis.org

2, 7, 20, 51, 118, 260, 548, 1121, 2236, 4373, 8412, 15960, 29926, 55547, 102196, 186567, 338258, 609532, 1092328, 1947829, 3457724, 6112873, 10766328, 18896880, 33062090, 57675631, 100338836, 174117915, 301432558, 520686644, 897559340, 1544207369, 2651881468, 4546263293, 7781245524
Offset: 0

Views

Author

R. J. Mathar, Aug 08 2015

Keywords

Comments

Third column of A234713.

Crossrefs

Cf. A234713.

Programs

  • Mathematica
    LinearRecurrence[{3,0,-5,0,3,1},{2,7,20,51,118,260},40] (* Harvey P. Dale, Aug 10 2024 *)

Formula

a(n) = 2*A001628(n) +A001628(n-1) -A001628(n-2) +A001628(n-3).

A261055 Expansion of ( -1-2*x+x^2+x^3 ) / (x^2+x-1)^3 .

Original entry on oeis.org

1, 5, 14, 36, 83, 182, 382, 778, 1546, 3013, 5778, 10932, 20447, 37867, 69526, 126690, 229309, 412570, 738308, 1314824, 2331218, 4116731, 7243092, 12700680, 22201165, 38696513, 67267550, 116642832, 201791063, 348339614, 600095386, 1031830006
Offset: 0

Views

Author

R. J. Mathar, Aug 08 2015

Keywords

Comments

Third column of A228815.

Crossrefs

Cf. A228815.

Programs

  • Mathematica
    CoefficientList[Series[(-1 - 2 x + x^2 + x^3)/(x^2 + x - 1)^3, {x, 0, 40}], x] (* or *) LinearRecurrence[{3,0,-5,0,3,1},{1,5,14,36,83,182},40] (* Harvey P. Dale, Nov 21 2018 *)

Formula

a(n) = A001628(n) +2*A001628(n-1) -A001628(n-2) -A001628(n-3).

A114711 Triangle read by rows: T(n,k) = number of peakless Motzkin paths of length n and having k weak ascents (1 <= k <= ceiling(n/3)).

Original entry on oeis.org

1, 1, 2, 3, 1, 5, 3, 8, 9, 13, 22, 2, 21, 51, 10, 34, 111, 40, 55, 233, 130, 5, 89, 474, 380, 35, 144, 942, 1022, 175, 233, 1836, 2590, 700, 14, 377, 3522, 6260, 2450, 126, 610, 6666, 14570, 7770, 756, 987, 12473, 32870, 22890, 3570, 42, 1597, 23109, 72244
Offset: 1

Views

Author

Emeric Deutsch, Dec 27 2005

Keywords

Comments

A Motzkin path of length n is a lattice path from (0,0) to (n,0) consisting of U=(1,1), D=(1,-1) and H=(1,0) steps and never going below the x-axis. A weak ascent in a Motzkin path is a maximal sequence of consecutive U and H steps.

Examples

			T(5,2)=3 because we have (UH)D(UU), (UHH)D(H) and (HUH)D(H) (the weak ascents are shown between parentheses).
Triangle begins:
   1;
   1;
   2;
   3,  1;
   5,  3;
   8,  9;
  13, 22,  2;
		

Crossrefs

Programs

  • Maple
    G:=(1-z-z^2-sqrt(1-2*z-z^2+2*z^3+z^4-4*t*z^3))/2/z^2: Gser:=simplify(series(G,z=0,22)): for n from 1 to 18 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 18 do seq(coeff(P[n],t^j),j=1..ceil(n/3)) od; # yields sequence in triangular form

Formula

Row n contains ceiling(n/3) terms.
Row sums yield the RNA secondary structure numbers (A004148).
Column 1 yields the Fibonacci numbers (A000045).
Column 2 yields A001628.
T(3n+1,n+1) = A000108(n) (the Catalan numbers).
Sum_{k=1..ceiling(n/3)} k*T(n,k) = A051286(n-1) (n >= 1).
G.f.: G = G(t, z) satisfies G = z*(t+G) + z^2*G*(1+G).

A132886 Triangle read by rows: T(n,k) is the number of paths in the right half-plane, from (0,0) to (n,0), consisting of steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0), having k U steps (0 <= k <= floor(n/2)).

Original entry on oeis.org

1, 1, 2, 2, 3, 6, 5, 18, 6, 8, 44, 30, 13, 102, 120, 20, 21, 222, 390, 140, 34, 466, 1140, 700, 70, 55, 948, 3066, 2800, 630, 89, 1884, 7770, 9800, 3780, 252, 144, 3672, 18780, 31080, 17850, 2772, 233, 7044, 43710, 91560, 72450, 19404, 924, 377, 13332, 98610
Offset: 0

Views

Author

Emeric Deutsch, Sep 03 2007

Keywords

Comments

Row n has 1+floor(n/2) terms. T(n,0) = A000045(n+1) (the Fibonacci numbers). T(2n,n) = binomial(2n,n) = A000984(n) (the central binomial coefficients). Row sums yield A059345. Column k has g.f. = binomial(2k,k)*z^(2k)/(1-z-z^2)^(2k+1); accordingly, T(n,1) = 2*A001628(n-2), T(n,2) = 6*A001873(n-4), T(n,3) = 20*A001875(n-6). See A132883 for the same statistic on paths restricted to the first quadrant.

Examples

			Triangle starts:
   1;
   1;
   2,   2;
   3,   6;
   5,  18,   6;
   8,  44,  30;
  13, 102, 120,  20;
T(3,1)=6 because we have hUD, UhD, UDh, hDU, DhU and DUh.
		

Crossrefs

Programs

  • Maple
    G:=1/sqrt((1-z-z^2)^2-4*t*z^2): Gser:=simplify(series(G,z=0,17)): for n from 0 to 13 do P[n]:= sort(coeff(Gser,z,n)) end do: for n from 0 to 13 do seq(coeff(P[n],t,j),j=0..floor((1/2)*n)) end do; # yields sequence in triangular form

Formula

G.f.: G(t,z) = 1/sqrt((1-z-z^2)^2 - 4tz^2).

A181974 Triangle T(n,k), read by rows, given by (1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, -3, 2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 3, 4, 2, 1, 5, 7, 5, 4, 1, 8, 11, 10, 9, 3, 1, 13, 18, 20, 20, 9, 5, 1, 21, 29, 38, 40, 22, 15, 4, 1, 34, 47, 71, 78, 51, 40, 14, 6, 1, 55, 76, 130, 147, 111, 95, 40, 22, 5, 1, 89, 123, 235, 272, 233, 213, 105, 68, 20, 7, 1
Offset: 0

Views

Author

Philippe Deléham, Apr 06 2012

Keywords

Examples

			Triangle begins :
1
1, 1
2, 3, 1
3, 4, 2, 1
5, 7, 5, 4, 1
8, 11, 10, 9, 3, 1
13, 18, 20, 20, 9, 5, 1
21, 29, 38, 40, 22, 15, 4, 1
34, 47, 71, 78, 51, 40, 14, 6, 1
55, 76, 130, 147, 111, 95, 40, 22, 5, 1
89, 123, 235, 272, 233, 213, 105, 68, 20, 7, 1
144, 199, 420, 495, 474, 455, 256, 185, 65, 30, 6, 1
		

Crossrefs

Formula

G.f.: (1+y*x+2*y*x^2)/(1-x-x^2-y^2*x^2).
T(n,k) = T(n-1,k) + T(n-2,k) + T(n-2,k-2), T(0,0) = T(1,0) = T(1,1) = T(2,2) = 1, T(2,0) = 2, T(2,1) = 3 and T(n,k) = 0 if k<0 or if k>n.
T(n + 2k, 2k) = A037027(n + k, k).
T(n + 2k +1, 2k + 1) = A182001(n + k, k).
T(n,0) = Fibonacci(n+1).

A185664 Riordan array (A000045(x)^m,x*A000108(x)), m=3.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 1, 0, 0, 0, 9, 4, 1, 0, 0, 0, 22, 14, 5, 1, 0, 0, 0, 51, 42, 20, 6, 1, 0, 0, 0, 111, 120, 69, 27, 7, 1, 0, 0, 0, 233, 335, 224, 104, 35, 8, 1, 0, 0, 0, 474, 940, 707, 372, 148, 44, 9, 1, 0, 0, 0, 942, 2695, 2221, 1281, 574, 202, 54, 10, 1, 0, 0, 0, 1836, 7980, 7038, 4343, 2122, 841, 267, 65, 11, 1, 0, 0, 0
Offset: 0

Views

Author

Vladimir Kruchinin, Feb 08 2011

Keywords

Examples

			0;
0,0;
0,0,0;
1,0,0,0;
3,1,0,0,0;
9,4,1,0,0,0;
22,14,5,1,0,0,0;
51,42,20,6,1,0,0,0;
		

Crossrefs

Cf. A001628 (column k=0).

Formula

R(n,k,m)=k*sum(i=0..n-k, sum(j=ceiling((i-m)/2)..i-m, binomial(j,i-m-j)*binomial(m+j-1,m-1))*binomial(2*(n-i)-k-1,n-i-1)/(n-i)), k>0.
R(n,0,m)=sum(j=ceiling((i-m)/2)..n-m, binomial(j,n-m-j)*binomial(m+j-1,m-1)), m=3.
Previous Showing 31-36 of 36 results.