A116853 Difference triangle of factorial numbers read by upward diagonals.
1, 1, 2, 3, 4, 6, 11, 14, 18, 24, 53, 64, 78, 96, 120, 309, 362, 426, 504, 600, 720, 2119, 2428, 2790, 3216, 3720, 4320, 5040, 16687, 18806, 21234, 24024, 27240, 30960, 35280, 40320
Offset: 1
Examples
Starting with 1, 2, 6, 24, 120 ... we take the first difference row (A001563), second, third, etc. Reorient into a flush left format, getting: [1] 1; [2] 1, 2; [3] 3, 4, 6; [4] 11, 14, 18, 24; [5] 53, 64, 78, 96, 120; [6] 309, 362, 426, 504, 600, 720; ...
Links
- Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened
Crossrefs
Programs
-
Haskell
a116853 n k = a116853_tabl !! (n-1) !! (k-1) a116853_row n = a116853_tabl !! (n-1) a116853_tabl = map reverse $ f (tail a000142_list) [] where f (u:us) vs = ws : f us ws where ws = scanl (-) u vs -- Reinhard Zumkeller, Aug 31 2014
-
Mathematica
rows = 8; rr = Range[rows]!; dd = Table[Differences[rr, n], {n, 0, rows-1}]; T = Array[t, {rows, rows}]; Do[Thread[Evaluate[Diagonal[T, -k+1]] = dd[[k, ;;rows-k+1]]], {k, rows}]; Table[t[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 21 2019 *)
Formula
Take successive difference rows of factorial numbers n! starting with n=1. Reorient into a triangle format.
Comments