A116854 First differences of the rows in the triangle of A116853, starting with 0.
1, 1, 1, 3, 1, 2, 11, 3, 4, 6, 53, 11, 14, 18, 24, 309, 53, 64, 78, 96, 120, 2119, 309, 362, 426, 504, 600, 720, 16687, 2119, 2428, 2790, 3216, 3720, 4320, 5040, 148329, 16687, 18806, 21234, 24024, 27240, 30960, 35280, 40320, 1468457, 148329, 165016, 183822, 205056, 229080, 256320, 287280, 322560, 362880
Offset: 1
Examples
First few rows of the triangle are: [1] 1; [2] 1, 1; [3] 3, 1, 2; [4] 11, 3, 4, 6; [5] 53, 11, 14, 18, 24; [6] 309, 53, 64, 78, 96, 120; [7] 2119, 309, 362, 426, 504, 600, 720; ... For example, row 4 (11, 3, 4, 6) are first differences along row 4 of A116853: ((0), 11, 14, 18, 24).
Links
- Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened
Crossrefs
Programs
-
Haskell
a116854 n k = a116854_tabl !! (n-1) !! (k-1) a116854_row n = a116854_tabl !! (n-1) a116854_tabl = [1] : zipWith (:) (tail $ map head tss) tss where tss = a116853_tabl -- Reinhard Zumkeller, Aug 31 2014
-
Maple
A116853 := proc(n,k) option remember ; if n = k then n! ; else procname(n,k+1)-procname(n-1,k) ; end if; end proc: A116854 := proc(n,k) if k = 1 then A116853(n,1) ; else A116853(n,k) -A116853(n,k-1) ; end if; end proc: seq(seq(A116854(n,k),k=1..n),n=1..15) ; # R. J. Mathar, Mar 27 2010
-
Mathematica
rows = 10; rr = Range[rows]!; dd = Table[Differences[rr, n], {n, 0, rows - 1}]; T = Array[t, {rows, rows}]; Do[Thread[Evaluate[Diagonal[T, -k+1]] = dd[[k, ;; rows-k+1]]], {k, rows}]; Table[({0}~Join~Table[t[n, k], {k, 1, n}]) // Differences, {n, 1, rows}] // Flatten (* Jean-François Alcover, Dec 21 2019 *)
Formula
Extensions
Definition made concrete and sequence extended by R. J. Mathar, Mar 27 2010
Comments