cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 461 results. Next

A085252 Number of ways to write n as sum of two powerful numbers (A001694).

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 2, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 2, 1, 1, 2, 1, 0, 0, 2, 2, 0, 1, 1, 1, 0, 0, 1, 0, 2, 0, 2, 1, 1, 0, 0, 2, 1, 1, 0, 1, 0, 1, 1, 2, 0, 0, 2, 0, 0, 0, 2, 2, 1, 0, 2, 0, 0, 0, 2, 2, 1, 0, 0, 2, 0, 0, 1, 2, 1, 1, 0, 0, 0, 0, 1, 2, 1, 1, 1, 1, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 23 2003

Keywords

Examples

			a(81) = 2: 81 = 9 + 72 = A001694(4) + A001694(12) = 32 + 49 = A001694(8) + A001694(10).
		

Crossrefs

Programs

  • Mathematica
    With[{m = 120}, pow = Select[Range[m], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 1 &]; BinCounts[Select[Plus @@@ Union[Sort /@ Tuples[pow, {2}]], # <= m &], {1, m, 1}]] (* Amiram Eldar, Jan 30 2023 *)

Formula

a(A085253(n)) = 0.
a(A076871(n)) > 0.
a(A085254(n)) = 1.
a(A085255(n)) > 1.

A361177 Exponentially powerful numbers: numbers whose exponents in their canonical prime factorization are all powerful numbers (A001694).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 48, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102
Offset: 1

Views

Author

Amiram Eldar, Mar 03 2023

Keywords

Comments

First differs from it subsequence A197680 at n = 167: a(167) = 256 is not a term of A197680.
The asymptotic density of this sequence is Product_{p prime} ((1 - 1/p)*(1 + Sum_{i>=1} 1/p^A001694(i))) = 0.6427901996... .

Crossrefs

Cf. A001694.
Similar sequences: A197680, A209061, A138302, A268335.

Programs

  • Mathematica
    powQ[n_] := n == 1 || Min[FactorInteger[n][[;; , 2]]] > 1; Select[Range[100], AllTrue[FactorInteger[#][[;;, 2]], powQ] &]
  • PARI
    ispow(n) = {n == 1 || vecmin(factor(n)[,2]) > 1; }
    is(n) = {my(e = factor(n)[, 2]); if(n == 1, return(1)); for(i=1, #e, if(!ispow(e[i]), return(0))); 1;}

A363169 Powerful abundant numbers: numbers that are both powerful (A001694) and abundant (A005101).

Original entry on oeis.org

36, 72, 100, 108, 144, 196, 200, 216, 288, 324, 392, 400, 432, 500, 576, 648, 784, 800, 864, 900, 968, 972, 1000, 1152, 1296, 1352, 1372, 1568, 1600, 1728, 1764, 1800, 1936, 1944, 2000, 2304, 2500, 2592, 2700, 2704, 2744, 2916, 3136, 3200, 3456, 3528, 3600, 3872, 3888, 4000
Offset: 1

Views

Author

Amiram Eldar, May 19 2023

Keywords

Comments

The least odd term is a(90) = 11025, and the least term that is coprime to 6 is 1382511906801025.
Are there two consecutive integers in this sequence? There are none below 10^22.

Examples

			36 = 2^2 * 3^2 is a term since it is powerful, and sigma(36) = 91 > 2*36 = 72.
		

Crossrefs

Intersection of A001694 and A005101.
Subsequences: A307959, A328136, A356871.

Programs

  • Mathematica
    Select[Range[4000], DivisorSigma[-1, #] > 2 && Min[FactorInteger[#][[;;, 2]]] > 1 &]
  • PARI
    is(n) = { my(f = factor(n)); n > 1 && vecmin(f[, 2]) > 1 && sigma(f, -1) > 2; }

A363189 Indices of the odd terms in the sequence of powerful numbers (A001694).

Original entry on oeis.org

1, 4, 6, 7, 10, 13, 16, 17, 20, 24, 25, 28, 30, 31, 35, 39, 41, 43, 45, 48, 51, 56, 57, 60, 62, 63, 65, 68, 71, 75, 79, 82, 83, 84, 87, 90, 94, 97, 98, 99, 102, 103, 105, 107, 110, 114, 117, 120, 122, 125, 127, 129, 133, 138, 141, 142, 144, 145, 148, 151, 152
Offset: 1

Views

Author

Amiram Eldar, May 21 2023

Keywords

Comments

The asymptotic density of this sequence is (2-sqrt(2))/(3-sqrt(2)) = 0.369398... .
If A001694(k) is a term of A363190 then k and k+1 are consecutive integers in this sequence.

Examples

			The first 6 powerful numbers are 1, 4, 8, 9, 16 and 25. 1, 9 and 25 are odd and their positions in the sequence are 1, 4 and 6, respectively.
		

Crossrefs

Programs

  • Mathematica
    Position[Select[Range[7000], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 1 &], _?(OddQ[#] &)] // Flatten
  • PARI
    lista(kmax) = {my(c = 0); for(k = 1, kmax, if(ispowerful(k), c++; if(k%2, print1(c, ", ")))); }

A363194 Number of divisors of the n-th powerful number A001694(n).

Original entry on oeis.org

1, 3, 4, 3, 5, 3, 4, 6, 9, 3, 7, 12, 5, 9, 12, 3, 4, 8, 15, 3, 9, 12, 16, 9, 6, 9, 18, 3, 15, 4, 3, 12, 15, 20, 9, 9, 12, 10, 3, 21, 5, 20, 12, 9, 7, 15, 18, 3, 24, 27, 3, 12, 18, 16, 11, 9, 12, 24, 9, 9, 25, 12, 4, 12, 3, 12, 9, 9, 18, 21, 3, 28, 27, 36, 3, 15
Offset: 1

Views

Author

Amiram Eldar, May 21 2023

Keywords

Crossrefs

Similar sequences: A072048, A076400, A363195.

Programs

  • Mathematica
    DivisorSigma[0, Select[Range[3000], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 1 &]]
  • PARI
    apply(numdiv, select(ispowerful, [1..3000]))
    
  • Python
    from itertools import count, islice
    from math import prod
    from sympy import factorint
    def A363194_gen(): # generator of terms
        for n in count(1):
            f = factorint(n).values()
            if all(e>1 for e in f):
                yield prod(e+1 for e in f)
    A363194_list = list(islice(A363194_gen(),20)) # Chai Wah Wu, May 21 2023

Formula

a(n) = A000005(A001694(n)).
Sum_{A001694(k) < x} a(k) = c_1 * sqrt(x) * log(x)^2 + c_2 * sqrt(x) * log(x) + c_3 * sqrt(x) + O(x^(5/12 + eps)), where c_1, c_2 and c_3 are constants. c_1 = Product_{p prime} (1 + 4/p^(3/2) - 1/p^2 - 6/p^(5/2) + 2/p^(7/2))/8 = 0.516273682988566836609... . [corrected Sep 21 2024]
a(n) = A343443(A306458(n)). - Amiram Eldar, Sep 01 2023

A258567 a(1) = 1; thereafter a(n) = smallest prime factor of the powerful number A001694(n).

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 3, 2, 2, 7, 2, 2, 3, 2, 2, 11, 5, 2, 2, 13, 2, 2, 2, 3, 3, 2, 2, 17, 2, 7, 19, 2, 2, 2, 3, 2, 2, 2, 23, 2, 5, 2, 3, 2, 3, 2, 2, 29, 2, 2, 31, 2, 2, 2, 2, 3, 3, 2, 2, 5, 2, 3, 11, 2, 37, 2, 2, 3, 2, 2, 41, 2, 2, 2, 43, 2, 2, 2, 3, 2, 2, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 06 2015

Keywords

Crossrefs

Programs

  • Haskell
    a258567 = a020639 . a001694
    
  • Mathematica
    Table[If[Min[(f = FactorInteger[n])[[;; , 2]]] > 1 || n == 1, f[[1, 1]], Nothing], {n, 1, 3000}] (* Amiram Eldar, Jan 30 2023 *)
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot, primefactors
    def A258567(n):
        def squarefreepi(n):
            return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f, kmin=0, kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l = n+x, 0
            j = isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2, 3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            c -= squarefreepi(integer_nthroot(x, 3)[0])-l
            return c
        return min(primefactors(bisection(f,n,n)),default=1) # Chai Wah Wu, Sep 10 2024

Formula

a(n) = A020639(A001694(n)).
a(A258599(n)) = A000040(n) and a(m) != A000040(n) for m < A258599(n).

Extensions

Definition made more precise by N. J. A. Sloane, Apr 29 2024

A349062 Powerful numbers (A001694) with a record gap to the next powerful number.

Original entry on oeis.org

1, 4, 9, 16, 36, 49, 81, 144, 169, 256, 289, 441, 529, 576, 676, 729, 900, 1024, 1156, 1225, 1372, 1444, 1600, 1849, 2209, 2401, 2916, 3600, 3721, 4096, 4356, 4624, 4761, 5041, 5625, 6400, 6561, 7225, 7396, 8281, 9025, 9409, 9801, 11025, 11236, 11664, 12544, 14400
Offset: 1

Views

Author

Amiram Eldar, Nov 07 2021

Keywords

Comments

This sequence is infinite since the asymptotic density of the powerful numbers is 0.
The corresponding record gaps are 3, 4, 7, 9, 13, 15, 19, 25, 27, 32, 35, 43, ...
Apparently, most of the terms are squares. The nonsquare terms are 1372, 465125, 4879688, ... (A371191).

Examples

			The sequence of powerful numbers begins with 1, 4, 8, 9, 16, 25, 27, 32, 36 and 49. The differences between these terms are 3, 4, 1, 7, 9, 2, 5, 4 and 13. The record values, 3, 4, 7, 9 and 13 occur after the powerful numbers 1, 4, 9, 16 and 36, the first 5 terms of this sequence.
		

Crossrefs

Programs

  • Mathematica
    powQ[n_] := Min[FactorInteger[n][[;; , 2]]] > 1; seq[nmax_] := Module[{s = {}, n1 = 1, gapmax = 0, gap}, Do[If[powQ[n], gap = n - n1; If[gap > gapmax, gapmax = gap; AppendTo[s, n1]]; n1 = n], {n, 2, nmax}]; s]; seq[10^5]

A363191 a(n) is the least start of a run of exactly n consecutive powerful numbers (A001694) that are even, or -1 if no such run exists.

Original entry on oeis.org

16, 4, 196, 968, 8712, 437400, 85730400, 5030690600, 264615012500, 5239012864, 550886816376, 2494017320776852
Offset: 1

Views

Author

Amiram Eldar, May 21 2023

Keywords

Comments

No more terms below 10^18.
At most one of the n even consecutive powerful numbers in the run is a perfect square. - David A. Corneth, May 21 2023

Examples

			a(1) = 16, since 16 = 2^4 is an even powerful number, preceded by an odd powerful number, 9 = 3^2, and followed by an odd powerful number, 25 = 5^2.
a(2) = 4, since 4 = 2^2 and 8 = 2^3 are two consecutive even powerful numbers, preceded by an odd powerful number, 1, and followed by an odd powerful number, 9 = 3^2.
		

Crossrefs

Programs

  • Mathematica
    seq[lim_] := Module[{pow = Union[Flatten[Table[i^2*j^3, {j, 1, lim^(1/3)}, {i, 1, Sqrt[lim/j^3]}]]], s = {}, rem, ind}, rem = Mod[pow, 2]; Do[ind = SequencePosition[rem, Join[{1}, Table[0, {k}], {1}], 1]; If[ind == {}, Break[]]; AppendTo[s, pow[[ind[[1, 1]] + 1]]], {k, 1, Infinity}]; s]; seq[10^10]

A363192 a(n) is the least start of a run of exactly n consecutive powerful numbers (A001694) that are odd, or -1 if no such run exists.

Original entry on oeis.org

1, 25, 2187, 703125, 93096125, 10229709861, 197584409639, 32044275110699, 164029657560618375
Offset: 1

Views

Author

Amiram Eldar, May 21 2023

Keywords

Comments

No more terms below 10^18.
At most one of the n odd consecutive powerful numbers in the run is a perfect square. - David A. Corneth, May 21 2023

Examples

			a(1) = 1, since 1 is an odd powerful number, followed by an even powerful number, 4 = 2^2.
a(2) = 25, since 25 = 5^2 and 27 = 3^3 are two consecutive odd powerful numbers, preceded by an even powerful number, 16 = 2^4, and followed by an even powerful number, 32 = 2^5.
		

Crossrefs

Programs

  • Mathematica
    seq[lim_] := Module[{pow = Union[Flatten[Table[i^2*j^3, {j, 1, lim^(1/3)}, {i, 1, Sqrt[lim/j^3]}]]], s = {}, rem, ind}, rem = Join[{0}, Mod[pow, 2]]; Do[ind = SequencePosition[rem, Join[{0}, Table[1, {k}], {0}], 1]; If[ind == {}, Break[]]; AppendTo[s, pow[[ind[[1, 1]]]]], {k, 1, Infinity}]; s]; seq[1.1*10^10]

A379716 The second Jordan totient function applied to the powerful numbers: a(n) = A007434(A001694(n)).

Original entry on oeis.org

1, 12, 48, 72, 192, 600, 648, 768, 864, 2352, 3072, 3456, 5832, 7200, 7776, 14520, 15000, 12288, 13824, 28392, 28224, 28800, 31104, 43200, 52488, 49152, 55296, 83232, 69984, 115248, 129960, 112896, 115200, 124416, 169344, 174240, 180000, 196608, 279312, 221184, 375000
Offset: 1

Views

Author

Amiram Eldar, Dec 30 2024

Keywords

Crossrefs

Cf. A001694, A007434, A323333 (analogous with J_1 = phi), A379715, A379717, A379718.

Programs

  • Mathematica
    f[p_, e_] := (p^2-1) * p^(2*e-2); j2[1] = 1; j2[n_] := Times @@ f @@@ FactorInteger[n]; seq[lim_] := j2 /@ Union[Flatten[Table[i^2*j^3, {j, 1, Surd[lim, 3]}, {i, 1, Sqrt[lim/j^3]}]]]; seq[1000]
  • PARI
    j2(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^2 - 1) * f[i,1]^(2*f[i,2] - 2));}
    list(lim) = apply(j2, select(ispowerful, vector(lim, i, i)));

Formula

Sum_{n>=1} 1/a(n) = zeta(2)^2 * Product_{p prime} (1 - 2/p^2 + 2/p^4) = 1.13107206648894940601... .
In general, Sum_{m powerful} 1/J_k(m) = zeta(k)^2 * Product_{p prime} (1 - 2/p^k + 2/p^(2*k)), for k >= 2, where J_k is the k-th Jordan totient function.
Previous Showing 11-20 of 461 results. Next