cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-54 of 54 results.

A224289 Number of permutations of length n containing exactly 1 occurrence of 123 and 2 occurrences of 132.

Original entry on oeis.org

0, 0, 0, 2, 8, 26, 79, 232, 664, 1856, 5072, 13568, 35584, 91648, 232192, 579584, 1427456, 3473408, 8359936, 19922944, 47054848, 110231552, 256311296, 591921152, 1358430208, 3099590656, 7034896384, 15888023552, 35718692864, 79960211456, 178291474432, 396076515328, 876844417024
Offset: 1

Views

Author

Brian Nakamura, Apr 03 2013

Keywords

Crossrefs

Programs

  • Maple
    # Programs can be obtained from author's personal website.
  • Mathematica
    LinearRecurrence[{8,-24,32,-16},{0,0,0,2,8,26,79},40] (* Harvey P. Dale, Jun 23 2017 *)

Formula

a(n) = 2^(-8+n)*(-136+70*n-11*n^2+n^3) for n>3. G.f.: -x^4*(x^3-10*x^2+8*x-2) / (2*x-1)^4. - Colin Barker, Apr 14 2013

A224291 Number of permutations of length n containing exactly 4 occurrences of 123 and 4 occurrences of 132.

Original entry on oeis.org

0, 0, 0, 0, 1, 11, 60, 270, 1084, 4028, 14144, 47577, 154740, 489728, 1514786, 4593118, 13682374, 40106060, 115824376, 329901232, 927585696, 2576685888, 7076644480, 19228648192, 51725149184
Offset: 1

Views

Author

Brian Nakamura, Apr 03 2013

Keywords

Crossrefs

Programs

  • Maple
    # Programs can be obtained from author's personal website.

A272099 Triangle read by rows, T(n,k) = C(n+1,k+1)*F([k-n, k-n-1], [-n-1], -1), where F is the generalized hypergeometric function, for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 4, 1, 12, 5, 1, 32, 18, 6, 1, 80, 56, 25, 7, 1, 192, 160, 88, 33, 8, 1, 448, 432, 280, 129, 42, 9, 1, 1024, 1120, 832, 450, 180, 52, 10, 1, 2304, 2816, 2352, 1452, 681, 242, 63, 11, 1, 5120, 6912, 6400, 4424, 2364, 985, 316, 75, 12, 1
Offset: 0

Views

Author

Peter Luschny, Apr 25 2016

Keywords

Comments

This triangle results when the first column is removed from A210038. - Georg Fischer, Jul 26 2023

Examples

			Triangle starts:
1;
4,    1;
12,   5,    1;
32,   18,   6,   1;
80,   56,   25,  7,   1;
192,  160,  88,  33,  8,   1;
448,  432,  280, 129, 42,  9,  1;
1024, 1120, 832, 450, 180, 52, 10, 1;
		

Crossrefs

A258109 (row sums), A008466 (alternating row sums), A001787 (col. 0), A001793 (col. 1), A055585 (col. 2).
Cf. A210038.

Programs

  • Maple
    T := (n,k) -> binomial(n+1,k+1)*hypergeom([k-n, k-n-1], [-n-1], -1):
    seq(seq(simplify(T(n,k)),k=0..n),n=0..9);
  • Mathematica
    T[n_, k_] := Binomial[n+1, k+1] HypergeometricPFQ[{k-n, k-n-1}, {-n-1}, -1];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 22 2019 *)

A387185 a(n) = n*2^(n-1) + binomial(n,2)*2^(n-2) + binomial(n,3)*2^(n-3).

Original entry on oeis.org

0, 1, 5, 19, 64, 200, 592, 1680, 4608, 12288, 32000, 81664, 204800, 505856, 1232896, 2969600, 7077888, 16711680, 39124992, 90898432, 209715200, 480772096, 1095761920, 2484076544, 5603590144, 12582912000, 28135391232, 62662901760, 139049566208, 307492814848, 677799526400
Offset: 0

Views

Author

Enrique Navarrete, Aug 21 2025

Keywords

Comments

Number of ternary strings of length n that contain one, two or three 0's.
Number of words of length n defined on five letters that contain one a or 2 b's or 3 c's and any number of d's and e's.

Examples

			a(3) = 19 since the words are (number of permutations in parentheses): add (3), ade (6), aee (3), bbd (3), bbe (3), ccc (1).
a(4) = 64 since from the 81 strings of length 4 we subtract the following 17 (number of permutations in parentheses): 0000 (1), 1111 (1), 1112 (4), 1122 (6), 1222 (4), 2222 (1).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[2^(n-k)*Binomial[n, k], {k, 1, 3}]; Array[a, 30, 0] (* Amiram Eldar, Aug 21 2025 *)

Formula

E.g.f.: (1 + x/2 + x^2/6)*x*exp(2*x).
G.f.: x*(1-3*x+3*x^2)/(2*x-1)^4 . - R. J. Mathar, Aug 26 2025
a(n) = n*2^n*(20+3*n+n^2)/48. - R. J. Mathar, Aug 26 2025
Previous Showing 51-54 of 54 results.