cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A121775 T(n, k) = Sum_{d|n} phi(n/d)*binomial(d,k) for n>0, T(0, 0) = 1. Triangle read by rows, for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 3, 5, 3, 1, 4, 8, 7, 4, 1, 5, 9, 10, 10, 5, 1, 6, 15, 20, 21, 15, 6, 1, 7, 13, 21, 35, 35, 21, 7, 1, 8, 20, 36, 60, 71, 56, 28, 8, 1, 9, 21, 42, 86, 126, 126, 84, 36, 9, 1, 10, 27, 59, 130, 215, 253, 210, 120, 45, 10, 1, 11, 21, 55, 165, 330, 462, 462, 330, 165, 55
Offset: 0

Views

Author

Paul D. Hanna, Aug 23 2006

Keywords

Comments

For n>0, (1/n)*Sum_{k=0..n} T(n,k)*(c-1)^k is the number of n-bead necklaces with c colors. See the cross references.

Examples

			Triangle begins:
[ 0]  1;
[ 1]  1,  1;
[ 2]  2,  3,  1;
[ 3]  3,  5,  3,   1;
[ 4]  4,  8,  7,   4,   1;
[ 5]  5,  9, 10,  10,   5,   1;
[ 6]  6, 15, 20,  21,  15,   6,   1;
[ 7]  7, 13, 21,  35,  35,  21,   7,   1;
[ 8]  8, 20, 36,  60,  71,  56,  28,   8,  1;
[ 9]  9, 21, 42,  86, 126, 126,  84,  36,  9,  1;
[10] 10, 27, 59, 130, 215, 253, 210, 120, 45, 10, 1;
		

Crossrefs

Cf. A053635 (row sums), A121776 (antidiagonal sums), A054630, A327029.
Cf. A000031 (c=2), A001867 (c=3), A001868 (c=4), A001869 (c=5), A054625 (c=6), A054626 (c=7), A054627 (c=8), A054628 (c=9), A054629 (c=10).

Programs

  • PARI
    T(n,k)=if(n
    				
  • SageMath
    # uses[DivisorTriangle from A327029]
    DivisorTriangle(euler_phi, binomial, 13) # Peter Luschny, Aug 24 2019

A210323 Number of 2-divided words of length n over a 3-letter alphabet.

Original entry on oeis.org

0, 3, 16, 57, 192, 599, 1872, 5727, 17488, 53115, 161040, 487073, 1471680, 4441167, 13392272, 40355877, 121543680, 365895947, 1101089808, 3312442185, 9962240928, 29954639751, 90049997136, 270661616363, 813397065024, 2444101696683, 7343167947040, 22059763982001, 66263812628160
Offset: 1

Views

Author

N. J. A. Sloane, Mar 20 2012

Keywords

Comments

See A210109 for further information.
It appears that A027376 gives the number of 2-divided words that have a unique division into two parts. - David Scambler, Mar 21 2012
Row sums of the following irregular triangle W(n,k) which shows how many words of length n over a 3-letter alphabet are 2-divided in k>=1 different ways (3-letter analog of A209919):
3;
8, 8;
18, 21, 18;
48, 48, 48, 48;
116, 124, 119, 124, 116;
312, 312, 312, 312, 312, 312;
810, 828, 810, 831, 810, 828, 810;
2184, 2184, 2192, 2184, 2184, 2192, 2184, 2184;
5880, 5928, 5880, 5928, 5883, 5928, 5880, 5928, 5880;
First column of the following triangle D(n,k) which shows how many words of length n over a 3-letter alphabet are k-divided:
3;
16, 1;
57, 16, 0;
192, 78, 6, 0;
599, 324, 56, 0, 0;
1872, 1141, 343, 15, 0, 0;
5727, 3885, 1534, 166, 0, 0, 0;
17488, 12630, 6067, 1135, 20, 0, 0, 0;
53115, 40315, 22162, 5865, 351, 0, 0, 0, 0;
161040, 126604, ...
- R. J. Mathar, Mar 25 2012
Speculation: W(2n+1,2)=W(2n+1,1) and W(2n,2) = W(2n,1)+W(n,1). W(3n+1,3)=W(3n+1,1); W(3n+2,3)=W(3n+1,1); W(3n,3) = W(3n,1)+W(n,1). - R. J. Mathar, Mar 27 2012

Crossrefs

Formula

a(n) = 3^n - A001867(n) (see A209970 for proof).

Extensions

a(1)-a(12) computed by David Scambler, Mar 19 2012; a(13) onwards from N. J. A. Sloane, Mar 20 2012

A278663 Number of periodic necklaces with n beads of 3 colors.

Original entry on oeis.org

0, 0, 3, 3, 6, 3, 14, 3, 24, 11, 54, 3, 148, 3, 318, 59, 834, 3, 2314, 3, 5952, 323, 16110, 3, 45178, 51, 122646, 2195, 341820, 3, 962634, 3, 2690844, 16115, 7596486, 363, 21568780, 3, 61171662, 122651, 174343026, 3, 498453878, 3, 1426419876, 958819, 4093181694, 3, 11770610128, 315, 33891550302
Offset: 0

Views

Author

Herbert Kociemba, Nov 25 2016

Keywords

Examples

			Example: The 6 periodic necklaces with 4 beads and the colors A, B and C are AAAA, BBBB, CCCC, ABAB, ACAC and BCBC.
		

Crossrefs

Cf. A001867, A027376, A066656 (2 colors).

Programs

  • Mathematica
    mx=40;f[x_,k_]:=Sum[(MoebiusMu[i]-EulerPhi[i])Log[1-k*x^i]/i,{i,1,mx}];CoefficientList[Series[f[x,3],{x,0,mx}],x]

Formula

G.f.: k=3, Sum_{i>=1} (mu(i) - phi(i))*log(1 - k*x^i)/i.
a(n) = A001867(n) - A027376(n). - Alois P. Heinz, Nov 25 2016
Previous Showing 21-23 of 23 results.