A166976
Array of A002450 in the top row and higher-order differences in subsequent rows, read by antidiagonals.
Original entry on oeis.org
0, 1, 1, 3, 4, 5, 9, 12, 16, 21, 27, 36, 48, 64, 85, 81, 108, 144, 192, 256, 341, 243, 324, 432, 576, 768, 1024, 1365, 729, 972, 1296, 1728, 2304, 3072, 4096, 5461, 2187, 2916, 3888, 5184, 6912, 9216, 12288, 16384, 21845, 6561
Offset: 0
The array starts:
0, 1, 5, 21, 85, 341,1365,5461,21845,87381,349525, A002450
1, 4, 16, 64, 256,1024,4096,16384,65536,262144,1048576, A000302
3, 12, 48, 192, 768,3072,12288,49152,196608,786432, A002001, A164346, A110594
9, 36, 144, 576,2304,9216,36864,147456 A002063, A055841
-
A002450 := proc(n) (4^n-1)/3 ; end proc:
A166976 := proc(n,k) option remember; if n = 0 then A002450(k) else procname(n-1,k+1)-procname(n-1,k) ; end if; end proc: # R. J. Mathar, Jul 02 2011
A183354
One quarter the number of nX2 1..4 arrays with no two neighbors of any element equal to each other.
Original entry on oeis.org
4, 36, 144, 576, 2304, 9216, 36864, 147456, 589824, 2359296, 9437184, 37748736, 150994944, 603979776, 2415919104, 9663676416, 38654705664, 154618822656, 618475290624, 2473901162496, 9895604649984, 39582418599936, 158329674399744
Offset: 1
Some solutions for 5X2 with a(1,1)=1
..1..1....1..3....1..2....1..3....1..3....1..2....1..4....1..2....1..3....1..3
..4..2....4..2....4..4....4..4....4..2....1..2....3..3....4..3....2..2....4..3
..3..3....4..2....3..3....3..2....4..1....4..4....2..2....2..1....4..1....4..2
..1..1....3..1....1..1....1..2....2..3....2..3....1..1....2..1....4..1....3..2
..2..4....2..1....2..2....1..3....1..3....1..1....4..4....3..4....2..3....3..1
A272342
a(n) = 27*8^n.
Original entry on oeis.org
27, 216, 1728, 13824, 110592, 884736, 7077888, 56623104, 452984832, 3623878656, 28991029248, 231928233984, 1855425871872, 14843406974976, 118747255799808, 949978046398464, 7599824371187712, 60798594969501696
Offset: 0
-
nmax=120; 27*8^Range[0, nmax]
-
a(n) = 27*8^n; \\ Michel Marcus, Apr 27 2016
A356036
Triangle read by rows, giving in the first column the powers of 3 (A000244) and in the next columns 4/3 times the previous row entry.
Original entry on oeis.org
1, 3, 4, 9, 12, 16, 27, 36, 48, 64, 81, 108, 144, 192, 256, 243, 324, 432, 576, 768, 1024, 729, 972, 1296, 1728, 2304, 3072, 4096, 2187, 2916, 3888, 5184, 6912, 9216, 12288, 16384, 6561, 8748, 11664, 15552, 20736, 27648, 36864, 49152, 65536, 19683, 26244, 34992, 46656, 62208, 82944, 110592, 147456, 196608, 262144
Offset: 0
The triangle T begins:
n\k 0 1 2 3 4 5 6 7 8 9 ...
0: 1
1: 3 4
2: 9 12 16
3: 27 36 48 64
4: 81 108 144 192 256
5: 243 324 432 576 768 1024
6: 729 972 1296 1728 2304 3072 4096
7: 2187 2916 3888 5184 6912 9216 12288 16384
8: 6561 8748 11664 15552 20736 27648 36864 49152 65536
9: 19683 26244 34992 46656 62208 82944 110592 147456 196608 262144
...
- Thomas Sonar, 3000 Jahre Analysis, 2. Auflage, Springer Spektrum, 2016, p.94, Abb. 3.1.2 und Abb. 3.1.3.
-
T[n_, k_] := 3^(n - k) * 4^k; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 05 2022 *)
Comments