cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A166976 Array of A002450 in the top row and higher-order differences in subsequent rows, read by antidiagonals.

Original entry on oeis.org

0, 1, 1, 3, 4, 5, 9, 12, 16, 21, 27, 36, 48, 64, 85, 81, 108, 144, 192, 256, 341, 243, 324, 432, 576, 768, 1024, 1365, 729, 972, 1296, 1728, 2304, 3072, 4096, 5461, 2187, 2916, 3888, 5184, 6912, 9216, 12288, 16384, 21845, 6561
Offset: 0

Views

Author

Paul Curtz, Oct 26 2009

Keywords

Examples

			The array starts:
0,   1,   5,  21,  85, 341,1365,5461,21845,87381,349525,    A002450
1,   4,  16,  64, 256,1024,4096,16384,65536,262144,1048576, A000302
3,  12,  48, 192, 768,3072,12288,49152,196608,786432,       A002001, A164346, A110594
9,  36, 144, 576,2304,9216,36864,147456                     A002063, A055841
		

Programs

  • Maple
    A002450 := proc(n) (4^n-1)/3 ; end proc:
    A166976 := proc(n,k) option remember; if n = 0 then A002450(k) else procname(n-1,k+1)-procname(n-1,k) ; end if; end proc: # R. J. Mathar, Jul 02 2011

Formula

T(0,k) = A002450(k). T(n,k) = T(n-1,k+1) - T(n-1,k), n > 0.

A183354 One quarter the number of nX2 1..4 arrays with no two neighbors of any element equal to each other.

Original entry on oeis.org

4, 36, 144, 576, 2304, 9216, 36864, 147456, 589824, 2359296, 9437184, 37748736, 150994944, 603979776, 2415919104, 9663676416, 38654705664, 154618822656, 618475290624, 2473901162496, 9895604649984, 39582418599936, 158329674399744
Offset: 1

Views

Author

R. H. Hardin Jan 04 2011

Keywords

Comments

Column 2 of A183362

Examples

			Some solutions for 5X2 with a(1,1)=1
..1..1....1..3....1..2....1..3....1..3....1..2....1..4....1..2....1..3....1..3
..4..2....4..2....4..4....4..4....4..2....1..2....3..3....4..3....2..2....4..3
..3..3....4..2....3..3....3..2....4..1....4..4....2..2....2..1....4..1....4..2
..1..1....3..1....1..1....1..2....2..3....2..3....1..1....2..1....4..1....3..2
..2..4....2..1....2..2....1..3....1..3....1..1....4..4....3..4....2..3....3..1
		

Formula

Empirical: a(n)=4*a(n-1) = A002063(n-1) for n>2

A272342 a(n) = 27*8^n.

Original entry on oeis.org

27, 216, 1728, 13824, 110592, 884736, 7077888, 56623104, 452984832, 3623878656, 28991029248, 231928233984, 1855425871872, 14843406974976, 118747255799808, 949978046398464, 7599824371187712, 60798594969501696
Offset: 0

Views

Author

Andres Cicuttin, Apr 26 2016

Keywords

Comments

a(n) are cubes that can be expressed as sum of exactly four distinct powers of two: a(n)=2^3n + 2^(3n+1) + 2^(3n+3) + 2^(3n+4). For example a(0) = 2^0 + 2^1 + 2^3 + 2^4 = 1 + 2 + 8 + 16 = 27. It is conjectured the a(n) are the only cubes that can be expressed as sum of exactly four distinct nonnegative powers of two (tested on cubes up to (10^7)^3).

Crossrefs

Programs

  • Mathematica
    nmax=120; 27*8^Range[0, nmax]
  • PARI
    a(n) = 27*8^n; \\ Michel Marcus, Apr 27 2016

Formula

a(n) = 27*8^n = 2^3n + 2^(3n+1) + 2^(3n+3) + 2^(3n+4).
a(n) = 8*a(n-1), n>0; a(0)=27.
G.f.: 27/(1-8*x).
E.g.f.: 27*exp(8*x).
a(n) = 27*A001018(n). - Michel Marcus, Apr 26 2016

A356036 Triangle read by rows, giving in the first column the powers of 3 (A000244) and in the next columns 4/3 times the previous row entry.

Original entry on oeis.org

1, 3, 4, 9, 12, 16, 27, 36, 48, 64, 81, 108, 144, 192, 256, 243, 324, 432, 576, 768, 1024, 729, 972, 1296, 1728, 2304, 3072, 4096, 2187, 2916, 3888, 5184, 6912, 9216, 12288, 16384, 6561, 8748, 11664, 15552, 20736, 27648, 36864, 49152, 65536, 19683, 26244, 34992, 46656, 62208, 82944, 110592, 147456, 196608, 262144
Offset: 0

Views

Author

Wolfdieter Lang, Aug 01 2022

Keywords

Comments

This is Boethius's triangle, with rows read as columns. See the link and reference.

Examples

			The triangle T begins:
n\k     0     1      2      3      4      5      6      7      8      9  ...
0:      1
1:      3     4
2:      9    12     16
3:     27    36     48     64
4:     81   108    144    192    256
5:    243   324    432    576    768   1024
6:    729   972   1296   1728   2304   3072   4096
7:   2187  2916   3888   5184   6912   9216  12288  16384
8:   6561  8748  11664  15552  20736  27648  36864  49152  65536
9:  19683 26244  34992  46656  62208  82944 110592 147456 196608 262144
...
		

References

  • Thomas Sonar, 3000 Jahre Analysis, 2. Auflage, Springer Spektrum, 2016, p.94, Abb. 3.1.2 und Abb. 3.1.3.

Crossrefs

Columns: A000244, A003946, A257970, ...
Diagonals: A000302, A002001(n+1), A002063, A002063(n+3), A118265(n+4), ...
Row sums: A005061(n+1).

Programs

  • Mathematica
    T[n_, k_] := 3^(n - k) * 4^k; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 05 2022 *)

Formula

T(n, k) = 3^(n-k)*4^k, for n >= 0, and k = 1, 2, ..., n.
G.f. of row polynomials R(n, y) = Sum_{k=0..n} T(n, k)*y^k: G(x, y) = 1/((1 - 3*x)*(1 - 4*x*y)).
Previous Showing 21-24 of 24 results.