cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A302542 Expansion of e.g.f. arctan(x)/cos(x) (odd powers only).

Original entry on oeis.org

1, 1, 29, -139, 31737, -1824151, 313750293, -51584719523, 13137192234225, -3947317975733039, 1522475446731094285, -702509124781480897211, 389722900767594460770025, -253710144786166583863030983, 192285396891961478711402819077, -167564604997707653568802119363795
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 09 2018

Keywords

Examples

			arctan(x)/cos(x) = x/1! + x^3/3! + 29*x^5/5! - 139*x^7/7! + 31737*x^9/9! - 1824151*x^11/11! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 16; Table[(CoefficientList[Series[ArcTan[x]/Cos[x], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]

Formula

a(n) = (2*n+1)! * [x^(2*n+1)] arctan(x)/cos(x).

A302543 Expansion of e.g.f. arctanh(x)/cos(x) (odd powers only).

Original entry on oeis.org

1, 5, 69, 2001, 104073, 8723549, 1088372557, 190057979177, 44285819490065, 13267464006201781, 4964113699657822805, 2266816666007859759489, 1239999748307938170531225, 800189083150907165762837517, 601369618369661775955962338653, 520607107122686183781743903500505
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 09 2018

Keywords

Examples

			arctanh(x)/cos(x) = x/1! + 5*x^3/3! + 69*x^5/5! + 2001*x^7/7! + 104073*x^9/9! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 16; Table[(CoefficientList[Series[ArcTanh[x]/Cos[x], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]

Formula

a(n) = (2*n+1)! * [x^(2*n+1)] arctanh(x)/cos(x).

A111196 a(n) = 2^(-n)*Sum_{k=0..n} binomial(2*n+1, 2*k+1)*A000364(n-k).

Original entry on oeis.org

1, 2, 9, 78, 1141, 25442, 804309, 34227438, 1886573641, 130746521282, 11127809595009, 1141012634368398, 138730500808639741, 19735099323279743522, 3247323803322747092109, 611982206046097666022958
Offset: 0

Views

Author

Philippe Deléham, Oct 24 2005

Keywords

Crossrefs

Programs

  • Mathematica
    t = Range[0, 32]!CoefficientList[ Series[ Sec[x], {x, 0, 32}], x]; f[n_] := 2^(-n)*Sum [Binomial[2n + 1, 2k + 1]*t[[2n - 2k + 1]], {k, 0, n}]; Table[ f[n], {n, 0, 16}] (* Robert G. Wilson v, Oct 24 2005 *)
    Table[Sum[Binomial[2*n + 1, 2*k + 1]*Abs[EulerE[2*(n-k)]], {k, 0, n}] / 2^n, {n, 0, 20}] (* Vaclav Kotesovec, Jul 10 2021 *)

Formula

a(n) = 2^(-n)*A002084(n).
a(n) ~ sinh(Pi/2) * 2^(3*n + 5) * n^(2*n + 3/2) / (Pi^(2*n + 3/2) * exp(2*n)). - Vaclav Kotesovec, Jul 10 2021

Extensions

More terms from Robert G. Wilson v, Oct 24 2005

A336024 Expansion of e.g.f. (1 + sinh(x)) / cos(x).

Original entry on oeis.org

1, 1, 1, 4, 5, 36, 61, 624, 1385, 18256, 50521, 814144, 2702765, 51475776, 199360981, 4381112064, 19391512145, 482962852096, 2404879675441, 66942218896384, 370371188237525, 11394877025289216, 69348874393137901, 2336793875186479104, 15514534163557086905
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 05 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 24; CoefficientList[Series[(1 + Sinh[x])/Cos[x], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := If[EvenQ[n], Abs[EulerE[n]], Sum[Binomial[n, k] Abs[EulerE[k]], {k, 0, n}]]; Table[a[n], {n, 0, 24}]

Formula

a(2*n) = A000364(n), a(2*n+1) = A002084(n).

A352906 Expansion of e.g.f. sinh(x) / (1 - sin(x)).

Original entry on oeis.org

0, 1, 2, 7, 24, 101, 472, 2507, 14784, 96361, 687392, 5332207, 44694144, 402663821, 3880880512, 39848805107, 434306095104, 5007757446481, 60907946680832, 779345606053207, 10465549612529664, 147168296199468341, 2162785172079204352, 33155700678534788507, 529311396083558989824
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 07 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 24; CoefficientList[Series[Sinh[x]/(1 - Sin[x]), {x, 0, nmax}], x] Range[0, nmax]!

Formula

a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n,2*k+1) * A000111(n-2*k).
a(n) ~ sinh(Pi/2) * 2^(n + 7/2) * n^(n + 3/2) / (exp(n) * Pi^(n + 3/2)). - Vaclav Kotesovec, Apr 07 2022
Previous Showing 11-15 of 15 results.