A085849 Decimal expansion of the probability that two m X m and n X n matrices (m,n large) have relatively prime determinants.
3, 5, 3, 2, 3, 6, 3, 7, 1, 8, 5, 4, 9, 9, 5, 9, 8, 4, 5, 4, 3, 5, 1, 6, 5, 5, 0, 4, 3, 2, 6, 8, 2, 0, 1, 1, 2, 8, 0, 1, 6, 4, 7, 7, 8, 5, 6, 6, 6, 9, 0, 4, 4, 6, 4, 1, 6, 0, 8, 5, 9, 4, 2, 8, 1, 4, 2, 3, 8, 3, 2, 5, 0, 0, 2, 6, 6, 9, 0, 0, 3, 4, 8, 3, 6, 7, 2, 0, 7, 8, 3, 3, 4, 3, 3, 5, 4, 9, 8, 9, 6, 7
Offset: 0
Examples
0.3532363718549959845435165504326820112801647785666904464160859428...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, section 2.5, "Hafner-Sarnak-McCurley Constant", pp. 110-112.
- Ilan Vardi, Computational Recreations in Mathematica, Redwood City, CA: Addison-Wesley, 1991, p. 174.
Links
- Philippe Flajolet and Ilan Vardi, Zeta function expansions of some classical constants.
- J. L. Hafner, P. Sarnak and K. McCurley, Relatively prime values of polynomials, in: M. Knopp and M. Sheigorn, Editors, A Tribute to Emil Grosswald: Number Theory and Related Analysis, Contemporary Mathematics, Vol. 143, AMS, 1993.
- Eric Weisstein's World of Mathematics, Hafner-Sarnak-McCurley Constant.
- Wikipedia, Hafner-Sarnak-McCurley constant.
Programs
-
Mathematica
digits = 102; CC = CoefficientList[Log[1 - (1 - QPochhammer[1/p])^2] + O[p, Infinity]^(4 digits), 1/p][[3 ;; -1]]; Hafner = CC.Table[PrimeZetaP[n + 1], {n, 1, Length[CC]}] // Exp // N[#, digits+10]&; RealDigits[Hafner, 10, digits][[1]] (* Jean-François Alcover, Apr 25 2016 *)
Formula
Equals Product_{p prime} (1-(1-Product_{n>=1} (1-1/p^n))^2). - Benoit Cloitre, Aug 05 2003
Extensions
More terms from Benoit Cloitre, Aug 05 2003
Edited by N. J. A. Sloane, Feb 11 2009 at the suggestion of R. J. Mathar
Twenty additional digits from R. J. Mathar, Feb 13 2009
Extended to 100 digits by Jean-François Alcover, Apr 25 2016
Comments