cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-21 of 21 results.

A085849 Decimal expansion of the probability that two m X m and n X n matrices (m,n large) have relatively prime determinants.

Original entry on oeis.org

3, 5, 3, 2, 3, 6, 3, 7, 1, 8, 5, 4, 9, 9, 5, 9, 8, 4, 5, 4, 3, 5, 1, 6, 5, 5, 0, 4, 3, 2, 6, 8, 2, 0, 1, 1, 2, 8, 0, 1, 6, 4, 7, 7, 8, 5, 6, 6, 6, 9, 0, 4, 4, 6, 4, 1, 6, 0, 8, 5, 9, 4, 2, 8, 1, 4, 2, 3, 8, 3, 2, 5, 0, 0, 2, 6, 6, 9, 0, 0, 3, 4, 8, 3, 6, 7, 2, 0, 7, 8, 3, 3, 4, 3, 3, 5, 4, 9, 8, 9, 6, 7
Offset: 0

Views

Author

Eric W. Weisstein, Jul 05 2003

Keywords

Comments

The Hafner-Sarnak-McCurley constant. [Named after the American mathematician James Lee Hafner (1954-2015), the South-African and American mathematician Peter Clive Sarnak (b. 1953) and the American mathematician and computer scientist Kevin Snow McCurley. - Amiram Eldar, Jun 15 2021]
Comment on numerics from R. J. Mathar, Apr 20 2011: (Start)
The definition s = Product_{p} (1-[1- Product_{n>=1} (1-1/p^n)]^2) may be binomially expanded to s = Product_{p} Sum_{n>=1} (2*A010815(n)-A002107(n))/p^n. The auxiliary sequence 2*A010815(n)-A002107(n) is 1, 0, -1, -2, -1, 0, 2, 2, 2, 2, -1, 0,... for n>=0.
The inverse Euler transformation of the auxiliary sequence generates Sum_{n} (2*A010815(n)-A002107(n)) /p^n = Product_{n} (1-1/p^n)^gamma(n) with gamma(n) = 0, -1, -2 ,-1, -2, 0, -2, -1, 0, -2, 0, -1,... for n>=1. This yields s = Product_{n>=1} zeta(n)^gamma(n) where zeta(n) are the values of the Riemann zeta function.
(End)

Examples

			0.3532363718549959845435165504326820112801647785666904464160859428...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, section 2.5, "Hafner-Sarnak-McCurley Constant", pp. 110-112.
  • Ilan Vardi, Computational Recreations in Mathematica, Redwood City, CA: Addison-Wesley, 1991, p. 174.

Crossrefs

Programs

  • Mathematica
    digits = 102; CC = CoefficientList[Log[1 - (1 - QPochhammer[1/p])^2] + O[p, Infinity]^(4 digits), 1/p][[3 ;; -1]]; Hafner = CC.Table[PrimeZetaP[n + 1], {n, 1, Length[CC]}] // Exp // N[#, digits+10]&; RealDigits[Hafner, 10, digits][[1]] (* Jean-François Alcover, Apr 25 2016 *)

Formula

Equals Product_{p prime} (1-(1-Product_{n>=1} (1-1/p^n))^2). - Benoit Cloitre, Aug 05 2003

Extensions

More terms from Benoit Cloitre, Aug 05 2003
Edited by N. J. A. Sloane, Feb 11 2009 at the suggestion of R. J. Mathar
Twenty additional digits from R. J. Mathar, Feb 13 2009
Extended to 100 digits by Jean-François Alcover, Apr 25 2016
Previous Showing 21-21 of 21 results.