A260877
Square array read by ascending antidiagonals: number of m-shape Euler numbers.
Original entry on oeis.org
1, 1, -1, 1, -1, 1, 1, -1, 1, -5, 1, -1, 5, -1, 21, 1, -1, 19, -61, 1, -105, 1, -1, 69, -1513, 1385, -1, 635, 1, -1, 251, -33661, 315523, -50521, 1, -4507, 1, -1, 923, -750751, 60376809, -136085041, 2702765, -1, 36457, 1, -1, 3431, -17116009, 11593285251
Offset: 1
[ n ] [0 1 2 3 4 5 6]
[ m ] --------------------------------------------------------------
[ 0 ] [1, -1, 1, -5, 21, -105, 635] A260845
[ 1 ] [1, -1, 1, -1, 1, -1, 1] A033999
[ 2 ] [1, -1, 5, -61, 1385, -50521, 2702765] A028296
[ 3 ] [1, -1, 19, -1513, 315523, -136085041, 105261234643] A002115
[ 4 ] [1, -1, 69, -33661, 60376809, -288294050521, 3019098162602349] A211212
A030662,A211213, A181991,
For example the number of ordered set partitions of {1,2,...,9} with sizes in [9], [6,3] and [3,3,3] are 1, 168, 1680 respectively. Thus A(3,3) = -1 + 168 - 1680 = -1513.
Formatted as a triangle:
[1]
[1, -1]
[1, -1, 1]
[1, -1, 1, -5]
[1, -1, 5, -1, 21]
[1, -1, 19, -61, 1, -105]
[1, -1, 69, -1513, 1385, -1, 635]
Cf.
A002115,
A028296,
A030662,
A033999,
A181991,
A211212,
A211213,
A260845,
A260833,
A260875,
A260876.
-
def A260877(m,n):
shapes = ([x*m for x in p] for p in Partitions(n).list())
return sum((-1)^len(s)*factorial(len(s))*SetPartitions(sum(s), s). cardinality() for s in shapes)
for m in (0..5): print([A260877(m,n) for n in (0..7)])
A318147
Coefficients of the Omega polynomials of order 3, triangle T(n,k) read by rows with 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, -9, 10, 0, 477, -756, 280, 0, -74601, 142362, -83160, 15400, 0, 25740261, -55429920, 40900860, -12612600, 1401400, 0, -16591655817, 38999319642, -33465991104, 13440707280, -2572970400, 190590400
Offset: 0
[0] [1]
[1] [0, 1]
[2] [0, -9, 10]
[3] [0, 477, -756, 280]
[4] [0, -74601, 142362, -83160, 15400]
[5] [0, 25740261, -55429920, 40900860, -12612600, 1401400]
[6] [0, -16591655817, 38999319642, -33465991104, 13440707280, -2572970400,190590400]
All row sums are 1, alternating row sums (taken absolute) are
A002115.
-
# See A318146 for the missing functions.
FL([seq(CL(OmegaPolynomial(3, n)), n=0..8)]);
-
(* OmegaPolynomials are defined in A318146 *)
Table[CoefficientList[OmegaPolynomial[3, n], x], {n, 0, 6}] // Flatten
-
# See A318146 for the function OmegaPolynomial.
[list(OmegaPolynomial(3, n)) for n in (0..6)]
A318260
Generalized Worpitzky numbers W_{m}(n,k) for m = 3, n >= 0 and 0 <= k <= n, triangle read by rows.
Original entry on oeis.org
1, -1, 1, 19, -39, 20, -1513, 4705, -4872, 1680, 315523, -1314807, 2052644, -1422960, 369600, -136085041, 710968441, -1484552160, 1548707160, -807206400, 168168000, 105261234643, -661231439271, 1729495989332, -2410936679424, 1889230062720, -789044256000, 137225088000
Offset: 0
[0] [ 1]
[1] [ -1, 1]
[2] [ 19, -39, 20]
[3] [ -1513, 4705, -4872, 1680]
[4] [ 315523, -1314807, 2052644, -1422960, 369600]
[5] [-136085041, 710968441, -1484552160, 1548707160, -807206400, 168168000]
Comments