A337590
a(0) = 0; a(n) = n - (1/n) * Sum_{k=1..n-1} binomial(n,k)^2 * (n-k) * k * a(k).
Original entry on oeis.org
0, 1, 0, -3, 28, -215, -174, 90223, -3840472, 103719537, 429704110, -357346077869, 35100093531900, -2005608652057595, -24108041118593418, 27881407632242902515, -4876442148527153942384, 474102062424164433715937, 12637408141631813073125094, -18867461801192524662360616421
Offset: 0
-
a[0] = 0; a[n_] := a[n] = n - (1/n) Sum[Binomial[n, k]^2 (n - k) k a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 19}]
nmax = 19; CoefficientList[Series[Log[1 + Sqrt[x] BesselI[1, 2 Sqrt[x]]], {x, 0, nmax}], x] Range[0, nmax]!^2
A337824
a(0) = 0; a(n) = n^2 - (1/n) * Sum_{k=1..n-1} (binomial(n,k) * (n-k))^2 * k * a(k).
Original entry on oeis.org
0, 1, 2, -15, 16, 2505, -60264, -606515, 131316928, -4813100271, -339213768200, 62401665573621, -2075963863814928, -745086903175541927, 140250562903680456332, 808225064553580739325, -5491409141464496462591744, 1013058261721909845376508449, 127689148764914765889971316600
Offset: 0
-
S:= series(log(1+x*BesselI(0,2*sqrt(x))),x,31):
0,seq(coeff(S,x,n)*(n!)^2, n=1..30); # Robert Israel, Jan 07 2024
-
a[0] = 0; a[n_] := a[n] = n^2 - (1/n) * Sum[(Binomial[n, k] (n - k))^2 k a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 18}]
nmax = 18; CoefficientList[Series[Log[1 + x BesselI[0, 2 Sqrt[x]]], {x, 0, nmax}], x] Range[0, nmax]!^2
A337825
a(0) = 0; a(n) = n^3 - (1/n) * Sum_{k=1..n-1} binomial(n,k)^2 * (n-k)^3 * k * a(k).
Original entry on oeis.org
0, 1, 6, -33, -512, 19405, 181116, -45817541, 771776384, 280415588121, -23151651942500, -3217963989270569, 816268626535923936, 38087192839910816485, -43268389662374707851552, 2822720920753640236252875, 3297662826737476255127428096, -833876355494162903256716734927
Offset: 0
-
a[0] = 0; a[n_] := a[n] = n^3 - (1/n) * Sum[Binomial[n, k]^2 (n - k)^3 k a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 17}]
nmax = 17; CoefficientList[Series[Log[1 + x (BesselI[0, 2 Sqrt[x]] + Sqrt[x] BesselI[1, 2 Sqrt[x]])], {x, 0, nmax}], x] Range[0, nmax]!^2
A217940
Triangle read by rows: coefficients of polynomials Q_n(x) arising in study of Riemann zeta function.
Original entry on oeis.org
1, 1, 1, 4, 4, 4, 36, 33, 42, 33, 576, 480, 648, 720, 456, 14400, 10960, 14900, 18780, 17900, 9460, 518400, 362880, 487200, 648240, 730800, 606480, 274800, 25401600, 16465680, 21656040, 29481585, 36149820, 36569190, 26845140, 10643745, 1625702400, 981872640, 1260878080, 1729096320, 2218287120, 2495765440, 2285697120, 1503969600, 530052880
Offset: 1
Triangle begins:
1
1, 1
4, 4, 4
36, 33, 42, 33
576, 480, 648, 720, 456
14400, 10960, 14900, 18780, 17900, 9460
518400, 362880, 487200, 648240, 730800, 606480, 274800
...
-
Clear[q]; q[n_, 1] := (n-1)!^2; q[n_, k_] := q[n, k] = Sum[ Binomial[n-1, j]*Binomial[n-1, j+1]* Sum[q[j+1, r]*q[n-j-1, k-r], {r, Max[1, -n+j+k+1], Min[j+1, k-1]}], {j, 0, n-2}]; Table[q[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 13 2013 *)
A268482
Triangle that arise in the study of Galois polynomials.
Original entry on oeis.org
1, -1, 8, 4, -76, 264, -33, 1248, -9735, 22080, 456, -32088, 440448, -2085096, 3715440, -9460, 1216600, -26297700, 205444800, -704121000, 1087450320, 274800, -64995600, 2073673920, -23974142160, 129203087760, -354403429920, 500558083200
Offset: 1
First few rows are:
1;
-1, 8;
4, -76, 264;
-33, 1248, -9735, 22080;
456, -32088, 440448, -2085096, 3715440;
...
-
c[k_] := c[k] = 1 - Sum[Binomial[k, j] Binomial[k-1, j-1] c[j], {j, k-1}];
eul[n_, x_] := Sum[(-1)^j Binomial[n+1, j] (x-j+1)^n, {j, 0, x+1}];
G[k_, m_] := G[k, m] = If [k==0 && m==0, 1, Sum[Binomial[k, j] Binomial[ k-1, j-1] c[j] Sum[eul[2j-1, i-1] G[k-j, m-i], {i, m}]/(2j-1)!, {j, k}]];
Table[(2n-1)! G[n, k], {n, 7}, {k, n}] // Flatten (* Jean-François Alcover, Sep 27 2018, from PARI *)
-
C(k) = {my(j); 1 - sum(j=1, k-1, binomial(k, j)*binomial(k-1, j-1)*C(j))};
eul(n, x) = {my(j); sum(j=0, x+1, (-1)^j*binomial(n+1, j)*(x+1-j)^n)};
G(k, m) = if ((k==0) && (m==0), 1, sum(j=1, k, binomial(k,j)*binomial(k-1,j-1)*C(j)*sum(i=1, m, eul(2*j-1,i-1)*G(k-j, m-i))/(2*j-1)!));
tabl(nn) = for (n=1, nn, for (k=1, n, print1((2*n-1)!*G(n,k), ", "));print(););
A336609
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(1 / BesselJ(0,2*sqrt(x)) - 1).
Original entry on oeis.org
1, 1, 5, 52, 917, 24396, 909002, 45062697, 2862532213, 226403027044, 21794813189810, 2507115921526437, 339421509956163362, 53393907140415300317, 9653668439939308357991, 1987242385193691443059527, 461955240782446199029195253
Offset: 0
-
nmax = 16; CoefficientList[Series[Exp[1/BesselJ[0, 2 Sqrt[x]] - 1], {x, 0, nmax}], x] Range[0, nmax]!^2
A000275[0] = 1; A000275[n_] := A000275[n] = -Sum[(-1)^(n - k) Binomial[n, k]^2 A000275[k], {k, 0, n - 1}]; a[0] = 1; a[n_] := a[n] = (1/n) Sum[Binomial[n, k]^2 k A000275[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 16}]
A372513
Sum_{n>=0} a(n) * x^n / (n!)^2 = -log(BesselJ(0,2*sqrt(2*x))) / 2.
Original entry on oeis.org
0, 1, 2, 16, 264, 7296, 302720, 17587200, 1362399360, 135693537280, 16893684928512, 2570631845806080, 469393033744588800, 101294080603625226240, 25502237392032633323520, 7408331513180811911233536, 2459543337577081650719784960, 925435622656059412145504256000
Offset: 0
-
nmax = 17; CoefficientList[Series[-Log[BesselJ[0, 2 Sqrt[2 x]]]/2, {x, 0, nmax}], x] Range[0, nmax]!^2
a[0] = 0; a[n_] := a[n] = (-2)^(n - 1) - (1/n) Sum[Binomial[n, k]^2 (-2)^k (n - k) a[n - k], {k, 1, n - 1}]; Table[a[n], {n, 0, 17}]