cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-35 of 35 results.

A367572 Numbers k such that k^8*2^k - 1 is a prime.

Original entry on oeis.org

5, 7, 49, 165, 251, 345, 385, 945, 949, 1001, 1963, 2113, 2249, 3751, 4381, 4911, 5133, 10039, 29693, 34901, 73885, 99319, 104883, 113613
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 23 2023

Keywords

Crossrefs

Numbers k such that k^m*2^k - 1 is a prime: A000043 (m = 0), A002234 (m = 1), A058781 (m = 2), A367037 (m = 3), A367102 (m = 4), A367464 (m = 5), A367478 (m = 6), A367561 (m = 7), this sequence (m = 8).

Programs

  • Magma
    [k: k in [1..4000] | IsPrime(k^8*2^k-1)];
  • Mathematica
    Select[Range[5000], PrimeQ[#^8*2^# - 1] &] (* Amiram Eldar, Nov 23 2023 *)

Extensions

a(19)-a(20) from Michael S. Branicky, Nov 23 2023
a(21) from Michael S. Branicky, Nov 25 2023
a(22)-a(24) from Michael S. Branicky, Aug 29 2024

A382447 Number of positive k <= n such that k*2^n - 1 is prime.

Original entry on oeis.org

0, 2, 2, 2, 2, 3, 2, 1, 1, 3, 3, 2, 3, 2, 2, 4, 6, 3, 1, 3, 3, 0, 1, 0, 1, 1, 2, 3, 2, 3, 4, 2, 2, 1, 5, 2, 4, 2, 1, 3, 4, 3, 4, 2, 2, 3, 2, 3, 2, 3, 3, 3, 4, 5, 2, 2, 3, 1, 3, 3, 3, 4, 3, 1, 0, 1, 2, 1, 4, 3, 3, 5, 3, 3, 6, 2, 3, 3, 3, 2, 3, 1, 1, 1, 3, 1, 2, 2, 2, 2, 3, 3, 2, 3, 2, 3, 2, 3, 3, 2
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 26 2025

Keywords

Crossrefs

Cf. A061411 (indices of 0s), A061414 (indices of 1s).

Programs

  • Magma
    [#[k: k in [1..n] | IsPrime(k*2^n-1)]: n in [1..100]];
  • Mathematica
    a[n_]:=Length[Select[Range[n],PrimeQ[#*2^n-1] &]]; Array[a,100] (* Stefano Spezia, Mar 26 2025 *)

A383043 Integers k such that d*2^k - 1 is prime for some proper divisor d of k.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 10, 12, 13, 16, 17, 18, 19, 21, 28, 30, 31, 36, 42, 46, 54, 60, 61, 63, 75, 88, 89, 99, 102, 104, 106, 107, 108, 126, 127, 132, 133, 204, 214, 216, 225, 264, 270, 286, 304, 306, 324, 330, 342, 352, 390, 414, 420, 456, 462, 468
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 19 2025

Keywords

Examples

			81 is not in the sequence because 1*2^81 - 1, 3*2^81 - 1, 9*2^81 - 1 and 27*81 - 1 are composites where 1, 3, 9 and 27 are proper divisors d of k = 81, while 81*2^81 - 1 is prime where 81 is nonproper divisor d of k = 81.
		

Crossrefs

Supersequence of A000043. Subsequence of A382811.

Programs

  • Magma
    [k: k in [1..500] | not #[d: d in [1..k-1] | k mod d eq 0 and IsPrime(d*2^k-1)] eq 0];
    
  • Mathematica
    s={};Do[d=Drop[Divisors[n],-1];If[ContainsAny[PrimeQ[d*2^n-1],{True}],AppendTo[s,n]],{n,468}];s (* James C. McMahon, May 01 2025 *)
  • PARI
    isok(k) = fordiv(k, d, if ((dMichel Marcus, Apr 20 2025

A383065 Integers k such that (k/rad(k))*2^rad(k) - 1 is prime where rad = A007947.

Original entry on oeis.org

2, 3, 4, 5, 7, 9, 12, 13, 16, 17, 18, 19, 27, 31, 36, 50, 60, 61, 64, 80, 89, 107, 108, 112, 127, 135, 147, 189, 200, 212, 243, 252, 343, 448, 464, 500, 521, 576, 600, 607, 612, 648, 675, 688, 756, 768, 784, 800, 832, 875, 900, 1058, 1212, 1279, 1280
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 19 2025

Keywords

Examples

			12 is a term because (12/6)*2^6 - 1 = 127 is prime, where d = 6 is largest squarefree divisor d of k = 12.
		

Crossrefs

Supersequence of A000043 and A172461.

Programs

  • Magma
    [k: k in [1..1300] | IsPrime((k div &*PrimeDivisors(k))*2^&*PrimeDivisors(k)-1)];
    
  • Mathematica
    s={};Do[r=Last[Select[Divisors[n], SquareFreeQ]];If[PrimeQ[2^r*n/r-1],AppendTo[s,n]],{n,1280}];s (* James C. McMahon, May 01 2025 *)
  • PARI
    isok(k) = my(r=factorback(factorint(k)[, 1])); ispseudoprime((k/r)*2^r - 1); \\ Michel Marcus, Apr 20 2025

A383220 Integers k such that rad(k)*2^(k/rad(k)) + 1 is prime where rad = A007947.

Original entry on oeis.org

1, 2, 3, 5, 6, 11, 14, 15, 20, 21, 23, 24, 26, 29, 30, 33, 35, 39, 41, 44, 51, 53, 65, 68, 69, 74, 78, 83, 86, 88, 89, 90, 95, 105, 111, 113, 114, 116, 117, 119, 125, 126, 131, 134, 135, 138, 140, 141, 146, 147, 153, 155, 156, 158, 165, 168, 171, 173, 174, 179
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 19 2025

Keywords

Examples

			20 is a term because 10*2^(20/10) + 1 = 41 is prime, where 10 is largest squarefree divisor of k = 20.
		

Crossrefs

Supersequence of A005384.

Programs

  • Magma
    [k: k in [1..180] | IsPrime(&*PrimeDivisors(k)*2^(k div &*PrimeDivisors(k))+1)];
    
  • Mathematica
    s={};Do[r=Last[Select[Divisors[n], SquareFreeQ]];If[PrimeQ[r*2^(n/r)+1],AppendTo[s,n]],{n,179}];s (* James C. McMahon, May 01 2025~ *)
  • PARI
    isok(k) = my(r=factorback(factorint(k)[, 1])); ispseudoprime(r*2^(k/r) + 1); \\ Michel Marcus, Apr 20 2025
Previous Showing 31-35 of 35 results.