cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-43 of 43 results.

A176894 Increase each digit in the binary representation of n by 2.

Original entry on oeis.org

2, 3, 32, 33, 322, 323, 332, 333, 3222, 3223, 3232, 3233, 3322, 3323, 3332, 3333, 32222, 32223, 32232, 32233, 32322, 32323, 32332, 32333, 33222, 33223, 33232, 33233, 33322, 33323, 33332, 33333, 322222, 322223, 322232, 322233, 322322
Offset: 0

Views

Author

Roger L. Bagula, Apr 28 2010

Keywords

Comments

Or: add two times the repunit of matching length to A007088(n).

Examples

			0+2, 1+2, 10+22, 11+22, 100+222, 101+222, 110+222, 111+222, 1000+2222, 1001+2222,...
		

Programs

  • Mathematica
    Table[Sum[Table[((Reverse[IntegerDigits[n, 2]]) /. 0 -> 2) /. 1 -> 3, {n, 0, 50}][[n]][[m]]*10^( m - 1), {m, 1, Length[Table[((Reverse[IntegerDigits[n, 2]]) /. 0 -> 2) /. 1 -> 3, {n, 0, 50}][[n]]]}], {n, 1, 51}]
    Table[FromDigits[2 + IntegerDigits[n, 2]], {n, 0, 100}]

Formula

a(n) = A007088(n)+A002276(A070939(n)).

A361820 Palindromes in A329150.

Original entry on oeis.org

0, 2, 3, 5, 7, 11, 22, 33, 55, 77, 202, 222, 232, 252, 272, 303, 313, 323, 333, 353, 373, 505, 525, 535, 555, 575, 707, 717, 727, 737, 757, 777, 1111, 2002, 2112, 2222, 2332, 2552, 2772, 3003, 3113, 3223, 3333, 3553, 3773, 5005, 5115, 5225, 5335, 5555, 5775, 7007, 7117
Offset: 1

Views

Author

Bernard Schott, Mar 25 2023

Keywords

Comments

If m is a palindrome with no digit greater than 5 in A118597, then A329147(m) is a term, but there exist terms that are not of this form as 313, 717, ...

Examples

			232 is a term which has two preimages since A329147(91) = A329147(121) = 232.
313 = A329147(26) is a term whose preimage is not in A118597.
2002 is a term since A329147(1001) = 2002.
2112 is a term since A329147(151) = 2112.
27172 = A329147(1471) is a term whose preimage is not in A118597.
		

Crossrefs

Intersection of A002113 and A329150.

Programs

  • Mathematica
    p[n_] := If[n > 0, Prime[n], 0]; seq[ndigmax_] := Module[{t = Table[FromDigits[ Flatten@ IntegerDigits@ (p /@ IntegerDigits[n])], {n, 0, 10^ndigmax - 1}]}, Union@ Select[t, # < 10^ndigmax && PalindromeQ[#] &]]; seq[4] (* Amiram Eldar, Mar 26 2023 *)
  • PARI
    ispal(n) = my(d=digits(n)); d==Vecrev(d);
    f(n) = if (n, fromdigits(concat(apply(d -> if (d, digits(prime(d)), [0]), digits(n)))), 0); \\ A329147
    lista(nn) = my(list = List(), m); for (n=0, nn, m = f(n); if ((m <= nn) && ispal(m), listput(list, m));); vecsort(Set(list)); \\ Michel Marcus, Mar 26 2023

A380435 Erase digit 0 from decimal expansion of n. Then repeatedly apply the number of divisor function (A000005) onto each digit until a stationary value is reached. a(n) is the final stationary value (if it is reached for all digits).

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 11, 12, 12, 12, 12, 12, 12, 12, 12, 2, 21, 22, 22, 22, 22, 22, 22, 22, 22, 2, 21, 22, 22, 22, 22, 22, 22, 22, 22, 2, 21, 22, 22, 22, 22, 22, 22, 22, 22, 2, 21, 22, 22, 22, 22, 22, 22, 22, 22, 2, 21, 22, 22, 22, 22, 22, 22, 22, 22, 2, 21, 22, 22, 22, 22, 22
Offset: 1

Views

Author

Ctibor O. Zizka, Jan 24 2025

Keywords

Comments

The number of iterations is 0, 1, 2, 3 for numbers containing the highest digits (1, 2), (3,5,7), (4, 9), (6, 8). n >= a(n) >= 1.

Examples

			For n = 21 a(21) = 21.
For n = 408 we iterate 48 --> 34 --> 23 --> 22, thus, after 3 iterations, a(408) = 22.
		

Crossrefs

Programs

Formula

a(A007931(n)) = A007931(n).
For r = 1, k >= 0:
a(10^k) = 1
a((10^k - 1)/9) = (10^k - 1)/9.
For r from [2, 9], k >= 0:
a(r*10^k) = 2.
a(r*(10^k - 1)/9) = 2*(10^k - 1)/9.
Previous Showing 41-43 of 43 results.