A332143
a(n) = 4*(10^(2*n+1)-1)/9 - 10^n.
Original entry on oeis.org
3, 434, 44344, 4443444, 444434444, 44444344444, 4444443444444, 444444434444444, 44444444344444444, 4444444443444444444, 444444444434444444444, 44444444444344444444444, 4444444444443444444444444, 444444444444434444444444444, 44444444444444344444444444444, 4444444444444443444444444444444
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332113 ..
A332193 (variants with different repeated digit 1, ..., 9).
Cf.
A332140 ..
A332149 (variants with different middle digit 0, ..., 9).
-
A332143 := n -> 4*(10^(2*n+1)-1)/9-10^n;
-
Array[4 (10^(2 # + 1)-1)/9 - 10^# &, 15, 0]
-
apply( {A332143(n)=10^(n*2+1)\9*4-10^n}, [0..15])
-
def A332143(n): return 10**(n*2+1)//9*4-10**n
A332148
a(n) = 4*(10^(2*n+1)-1)/9 + 4*10^n.
Original entry on oeis.org
8, 484, 44844, 4448444, 444484444, 44444844444, 4444448444444, 444444484444444, 44444444844444444, 4444444448444444444, 444444444484444444444, 44444444444844444444444, 4444444444448444444444444, 444444444444484444444444444, 44444444444444844444444444444, 4444444444444448444444444444444
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332140 ..
A332149 (variants with different middle digit 0, ..., 9).
-
A332148 := n -> 4*((10^(2*n+1)-1)/9+10^n);
-
Array[4 ((10^(2 # + 1)-1)/9 + 10^#) &, 15, 0]
-
apply( {A332148(n)=(10^(n*2+1)\9+10^n)*4}, [0..15])
-
def A332148(n): return (10**(n*2+1)//9+10**n)*4
A365644
Array read by ascending antidiagonals: A(n, k) = k*(10^n - 1)/9 with k >= 0.
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 11, 2, 0, 0, 111, 22, 3, 0, 0, 1111, 222, 33, 4, 0, 0, 11111, 2222, 333, 44, 5, 0, 0, 111111, 22222, 3333, 444, 55, 6, 0, 0, 1111111, 222222, 33333, 4444, 555, 66, 7, 0, 0, 11111111, 2222222, 333333, 44444, 5555, 666, 77, 8, 0
Offset: 0
The array begins:
0, 0, 0, 0, 0, 0, ...
0, 1, 2, 3, 4, 5, ...
0, 11, 22, 33, 44, 55, ...
0, 111, 222, 333, 444, 555, ...
0, 1111, 2222, 3333, 4444, 5555, ...
0, 11111, 22222, 33333, 44444, 55555, ...
...
Cf.
A000004 (n=0 or k=0),
A001477 (n=1),
A002275 (k=1),
A002276 (k=2),
A002277 (k=3),
A002278 (k=4),
A002279 (k=5),
A002280 (k=6),
A002281 (k=7),
A002282 (k=8),
A002283 (k=9),
A008593 (n=2),
A053422 (main diagonal),
A105279 (k=10),
A132583,
A177769 (n=3),
A365645 (antidiagonal sums),
A365646.
-
A[n_,k_]:=k(10^n-1)/9; Table[A[n-k,k],{n,0,9},{k,0,n}]//Flatten
A099658
a(n) is the smallest prime greater than 4(10^n - 1)/9.
Original entry on oeis.org
2, 5, 47, 449, 4447, 44449, 444449, 4444469, 44444453, 444444457, 4444444447, 44444444497, 444444444461, 4444444444493, 44444444444459, 444444444444461, 4444444444444463, 44444444444444461, 444444444444444469, 4444444444444444537, 44444444444444444447
Offset: 0
n=4: 44 is followed by 47.
A332142
a(n) = 4*(10^(2*n+1)-1)/9 - 2*10^n.
Original entry on oeis.org
2, 424, 44244, 4442444, 444424444, 44444244444, 4444442444444, 444444424444444, 44444444244444444, 4444444442444444444, 444444444424444444444, 44444444444244444444444, 4444444444442444444444444, 444444444444424444444444444, 44444444444444244444444444444, 4444444444444442444444444444444
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332112 ..
A332192 (variants with different repeated digit 1, ..., 9).
Cf.
A332140 ..
A332149 (variants with different middle digit 0, ..., 9).
-
A332142 := n -> 4*(10^(2*n+1)-1)/9-2*10^n;
-
Array[4 (10^(2 # + 1)-1)/9 - 2*10^# &, 15, 0]
-
apply( {A332142(n)=10^(n*2+1)\9*4-2*10^n}, [0..15])
-
def A332142(n): return 10**(n*2+1)//9*4-2*10**n
A332145
a(n) = 4*(10^(2*n+1)-1)/9 + 10^n.
Original entry on oeis.org
5, 454, 44544, 4445444, 444454444, 44444544444, 4444445444444, 444444454444444, 44444444544444444, 4444444445444444444, 444444444454444444444, 44444444444544444444444, 4444444444445444444444444, 444444444444454444444444444, 44444444444444544444444444444, 4444444444444445444444444444444
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332115 ..
A332195 (variants with different repeated digit 1, ..., 9).
Cf.
A332140 ..
A332149 (variants with different middle digit 0, ..., 9).
-
A332145 := n -> 4*(10^(2*n+1)-1)/9+10^n;
-
Array[4 (10^(2 # + 1)-1)/9 + 10^# &, 15, 0]
-
apply( {A332145(n)=10^(n*2+1)\9*4+10^n}, [0..15])
-
def A332145(n): return 10**(n*2+1)//9*4+10**n
A332146
a(n) = 4*(10^(2*n+1)-1)/9 + 2*10^n.
Original entry on oeis.org
6, 464, 44644, 4446444, 444464444, 44444644444, 4444446444444, 444444464444444, 44444444644444444, 4444444446444444444, 444444444464444444444, 44444444444644444444444, 4444444444446444444444444, 444444444444464444444444444, 44444444444444644444444444444, 4444444444444446444444444444444
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332116 ..
A332196 (variants with different repeated digit 2, ..., 9).
Cf.
A332140 ..
A332149 (variants with different middle digit 0, ..., 9).
-
A332146 := n -> 4*(10^(2*n+1)-1)/9+2*10^n;
-
Array[4 (10^(2 # + 1)-1)/9 + 2*10^# &, 15, 0]
-
apply( {A332146(n)=10^(n*2+1)\9*4+2*10^n}, [0..15])
-
def A332146(n): return 10**(n*2+1)//9*4+2*10**n
A332147
a(n) = 4*(10^(2*n+1)-1)/9 + 3*10^n.
Original entry on oeis.org
7, 474, 44744, 4447444, 444474444, 44444744444, 4444447444444, 444444474444444, 44444444744444444, 4444444447444444444, 444444444474444444444, 44444444444744444444444, 4444444444447444444444444, 444444444444474444444444444, 44444444444444744444444444444, 4444444444444447444444444444444
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332117 ..
A332197 (variants with different repeated digit 1, ..., 9).
Cf.
A332140 ..
A332149 (variants with different middle digit 0, ..., 9).
-
A332147 := n -> 4*(10^(2*n+1)-1)/9+3*10^n;
-
Array[4 (10^(2 # + 1)-1)/9 + 3*10^# &, 15, 0]
LinearRecurrence[{111,-1110,1000},{7,474,44744},20] (* Harvey P. Dale, Mar 08 2022 *)
-
apply( {A332147(n)=10^(n*2+1)\9*4+3*10^n}, [0..15])
-
def A332147(n): return 10**(n*2+1)//9*4+3*10**n
A205084
a(n) = n 4's sandwiched between two 1's.
Original entry on oeis.org
11, 141, 1441, 14441, 144441, 1444441, 14444441, 144444441, 1444444441, 14444444441, 144444444441, 1444444444441, 14444444444441, 144444444444441, 1444444444444441, 14444444444444441, 144444444444444441, 1444444444444444441, 14444444444444444441
Offset: 0
Comments