cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A182411 Triangle T(n,k) = (2*k)!*(2*n)!/(k!*n!*(k+n)!) with k=0..n, read by rows.

Original entry on oeis.org

1, 2, 2, 6, 4, 6, 20, 10, 12, 20, 70, 28, 28, 40, 70, 252, 84, 72, 90, 140, 252, 924, 264, 198, 220, 308, 504, 924, 3432, 858, 572, 572, 728, 1092, 1848, 3432, 12870, 2860, 1716, 1560, 1820, 2520, 3960, 6864, 12870, 48620, 9724, 5304, 4420, 4760, 6120, 8976
Offset: 0

Views

Author

Bruno Berselli, Apr 27 2012

Keywords

Comments

This is a companion to the triangle A068555.
Row sum is 2*A132310(n-1) + A000984(n) for n>0, where A000984(n) = T(n,0) = T(n,n). Also:
T(n,1) = -A002420(n+1).
T(n,2) = A002421(n+2).
T(n,3) = -A002422(n+3) = 2*A007272(n).
T(n,4) = A002423(n+4).
T(n,5) = -A002424(n+5).
T(n,6) = A020923(n+6).
T(n,7) = -A020925(n+7).
T(n,8) = A020927(n+8).
T(n,9) = -A020929(n+9).
T(n,10) = A020931(n+10).
T(n,11) = -A020933(n+11).

Examples

			Triangle begins:
      1;
      2,    2;
      6,    4,    6;
     20,   10,   12,   20;
     70,   28,   28,   40,   70;
    252,   84,   72,   90,  140,  252;
    924,  264,  198,  220,  308,  504,  924;
   3432,  858,  572,  572,  728, 1092, 1848,  3432;
  12870, 2860, 1716, 1560, 1820, 2520, 3960,  6864, 12870;
  48620, 9724, 5304, 4420, 4760, 6120, 8976, 14586, 25740, 48620;
  ...
Sum_{k=0..8} T(8,k) = 12870 + 2860 + 1716 + 1560 + 1820 + 2520 + 3960 + 6864 + 12870 = 2*A132310(7) + A000984(8) = 2*17085 + 12870 = 47040.
		

References

  • Umberto Scarpis, Sui numeri primi e sui problemi dell'analisi indeterminata in Questioni riguardanti le matematiche elementari, Nicola Zanichelli Editore (1924-1927, third edition), page 11.
  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 103.

Crossrefs

Programs

  • Magma
    [Factorial(2*k)*Factorial(2*n)/(Factorial(k)*Factorial(n)*Factorial(k+n)): k in [0..n], n in [0..9]];
  • Mathematica
    Flatten[Table[Table[(2 k)! ((2 n)!/(k! n! (k + n)!)), {k, 0, n}], {n, 0, 9}]]

A020933 Expansion of (1-4*x)^(21/2).

Original entry on oeis.org

1, -42, 798, -9044, 67830, -352716, 1293292, -3325608, 5819814, -6466460, 3879876, -705432, -117572, -54264, -38760, -36176, -40698, -52668, -76076, -120120, -204204, -369512, -705432, -1410864, -2939300, -6348888, -14162904, -32522224, -76659528, -185040240
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Surd[(1-4x)^21,2],{x,0,30}],x] (* Harvey P. Dale, Feb 25 2020 *)

Formula

D-finite with recurrence: n*a(n) +2*(-2*n+23)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
From Amiram Eldar, Mar 25 2022: (Start)
a(n) = (-4)^n*binomial(21/2, n).
Sum_{n>=0} 1/a(n) = 406240/415701 - 46*Pi/(3^13*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 728323714975904/710426513671875 - 92*log(phi)/(5^12*sqrt(5)), where phi is the golden ratio (A001622). (End)

A182534 Array read by antidiagonals: coefficient of the Euler-Mascheroni constant in below expression.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 5, 4, 2, 6, 14, 10, 3, 4, 10, 42, 28, 6, 6, 5, 20, 132, 84, 14, 12, 6, 10, 35, 429, 264, 36, 28, 10, 12, 14, 70, 1430, 858, 99, 72, 20, 20, 14, 28, 126, 4862, 2860, 286, 198, 45, 40, 20, 28, 42, 252
Offset: 1

Views

Author

John M. Campbell, May 05 2012

Keywords

Comments

The (i,j)-entry of the array is the coefficient of the Euler-Mascheroni constant in: -2^(i+2j-1)/Pi*int(log(x)*cos(x)^i*sin(x)^(2j-1)/x, x=0..infinity); see Mathematica code below.
First row: A000108.
Second row: -A002420.
Third row: A007054.
Fourth row: A002421.
Fifth row: A007272.
Sixth row: -A002422.
Eighth row: A002423.
First column: A001405.
Second column: A089408.
Odd entries on main diagonal: A126596.

Examples

			Evaluate: -256/Pi*int(cos(x)^3*log(x)*sin(x)^5/x, x=0..infinity) = 3*eulergamma-log(9/8). Thus the (3,3) entry of the array is 3, the coefficient of the Euler-Mascheroni constant in this expression.
The array begins as:
| 1   1   2   5   14  42  132 429  ... |
| 2   2   4   10  28  84  264 858  ... |
| 3   2   3   6   14  36  99  286  ... |
| 6   4   6   12  28  72  198 572  ... |
| 10  5   6   10  20  45  110 286  ... |
| 20  10  12  20  40  90  220 572  ... |
| 35  14  14  20  35  70  154 364  ... |
| 70  28  28  40  70  140 308 728  ... |
| ... ... ... ... ... ... ... ...  ... |
		

Crossrefs

Programs

  • Mathematica
    A[a_, b_] :=
      A[a, b] =
       Array[Coefficient[
          Integrate[
            Log[x]*Cos[x]^#1*Sin[x]^(2 #2 - 1)/x, {x, 0,
             Infinity}] (2^(#1 + 2 #2 - 1))/(-\[Pi]), EulerGamma] &, {a, b}];
    A[11, 11];
    Print[A[11, 11] // MatrixForm];
    Table2 = {};
    k = 1;
    While[k < 11, Table1 = {};
      i = 1;
      j = k;
      While[0 < j,
        AppendTo[Table1,
        First[Take[First[Take[A[11, 11], {i, i}]], {j, j}]]];
        j = j - 1;
        i = i + 1];
        AppendTo[Table2, Table1];
        k++];
    Print[Flatten[Table2]]
Previous Showing 11-13 of 13 results.