A226975 Decimal expansion I_1(1), the modified Bessel function of the first kind.
5, 6, 5, 1, 5, 9, 1, 0, 3, 9, 9, 2, 4, 8, 5, 0, 2, 7, 2, 0, 7, 6, 9, 6, 0, 2, 7, 6, 0, 9, 8, 6, 3, 3, 0, 7, 3, 2, 8, 8, 9, 9, 6, 2, 1, 6, 2, 1, 0, 9, 2, 0, 0, 9, 4, 8, 0, 2, 9, 4, 4, 8, 9, 4, 7, 9, 2, 5, 5, 6, 4, 0, 9, 6, 4, 3, 7, 1, 1, 3, 4, 0, 9, 2, 6, 6, 4, 9, 9, 7, 7, 6, 6, 8, 1, 4, 4, 1, 0, 0, 6, 4, 6, 7, 7, 8, 8, 6
Offset: 0
Examples
0.56515910399248502720769602760986330732889962162109...
References
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 51, page 504.
Links
- Eric Weisstein's World of Mathematics, Modified Bessel Function of the First Kind.
Programs
-
Mathematica
RealDigits[BesselI[1, 1], 10, 110][[1]]
-
PARI
besseli(1,1) \\ Charles R Greathouse IV, Feb 19 2014
-
SageMath
((1/2) * sum(1 / (4^x * factorial(x) * rising_factorial(2, x)), x, 0, oo)).n(360) # Peter Luschny, Jan 29 2024
Formula
From Antonio GraciĆ” Llorente, Jan 29 2024: (Start)
I_1(1) = (1/2) * Sum_{k>=0} (2*k)/(4^k*k!^2) = (1/2) * Sum_{k>=0} (2*k)/A002454(k).
Equals (1/2) * Sum_{k>=0} (4*k^2 + 4*k - 1) / (2*k)!!^2.
Equals exp(-1) * Sum_{k>=0} binomial(2*k,k+1)/(2^k*k!).
Equals (-e) * Sum_{k>=0} (-1/2)^k * binomial(2*k,k+1)/k!
Equals (1/Pi)*Integral_{t=0..Pi} exp(cos(t))*cos(t) dt. (End)
Comments