cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-34 of 34 results.

A003243 Number of partially achiral trees with n nodes.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 9, 19, 30, 61, 99, 198, 333, 650, 1115, 2143, 3743, 7101, 12553, 23605, 42115, 78670, 141284, 262679, 474083, 878386, 1591038, 2940512, 5340712, 9852201, 17930619, 33031498, 60209609, 110801271, 202208576, 371820314
Offset: 1

Views

Author

Keywords

Comments

The g.f. (1-z**2-2*z**3-8*z**4+7*z**5+4*z**6)/(1-z-z**2-2*z**3-6*z**4+14*z**5) was conjectured by Simon Plouffe in his 1992 dissertation, but this is incorrect.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • PARI
    t(n)=local(A=x); if(n<1, 0, for(k=1, n-1, A/=(1-x^k+x*O(x^n))^polcoeff(A, k)); polcoeff(A, n)) {n=100;Ty2=sum(i=0,n,t(i)*y^(2*i)); p=subst(y*Ty2/(y-Ty2),y,y+y*O(y^n));p=Pol(p,y);a=subst(Ty2*(y+p+(p^2-subst(p,y,y^2))/(2*y))/y^2-(p^2+subst(p,y,y^2))/(2*y^2)+Ty2,y,x+x*O(x^n)); for(i=0,n-2,print1(polcoeff(a,i)","))} \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 26 2008

Formula

a(n) ~ c * d^n, where d = 1.8332964415228533737988849634129366404833316666328290543862325494628120733... is the root of the equation Sum_{k>=1} A000081(k) / d^(2*k-1) = 1 and c = 0.123308773712306885475561730669251048497115967922743533462465528423705228... - Vaclav Kotesovec, Dec 13 2020

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 26 2008

A003244 Number of unrooted achiral trees with n nodes.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 9, 16, 23, 35, 51, 72, 97, 136, 186, 230, 321, 401, 526, 647, 844, 1000, 1331, 1539, 1960, 2299, 2943, 3307, 4237, 4779, 5961, 6744, 8372, 9239, 11605, 12694, 15549, 17264, 21086, 22784, 27976, 30357, 36598, 39843, 47821
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Formula

In terms of generating functions: A003244(x) = A003241(x)-(P^2(x)-P(x^2))/(2*x^2) with P(x)=x*A003238(x). [Harary & Robinson eq 45]. - R. J. Mathar, Sep 28 2011

Extensions

Extended by R. J. Mathar, Sep 28 2011

A380240 Array read by antidiagonals: A(n,k) is the number of sensed planar maps with n vertices and k faces including one distinguished outside face, n >= 1, k >= 1.

Original entry on oeis.org

1, 1, 2, 3, 1, 4, 12, 8, 2, 10, 48, 64, 25, 3, 26, 196, 412, 314, 78, 6, 80, 798, 2458, 2976, 1478, 270, 14, 246, 3248, 13452, 23588, 18844, 6748, 926, 34, 810, 13184, 70330, 166050, 192096, 110714, 30168, 3305, 95, 2704, 53416, 353716, 1074472, 1676668, 1397484, 613884, 132734, 11868, 280, 9252
Offset: 1

Views

Author

Andrew Howroyd, Jan 21 2025

Keywords

Comments

The number of edges is n + k - 2.

Examples

			Array begins:
==============================================================
n\k |  1    2      3      4       5       6       7      8 ...
----+---------------------------------------------------------
  1 |  1    1      2      4      10      26      80    246 ...
  2 |  1    3     12     48     196     798    3248  13184 ...
  3 |  1    8     64    412    2458   13452   70330 353716 ...
  4 |  2   25    314   2976   23588  166050 1074472 ...
  5 |  3   78   1478  18844  192096 1676668 ...
  6 |  6  270   6748 110714 1397484 ...
  7 | 14  926  30168 613884 ...
  8 | 34 3305 132734 ...
   ...
		

Crossrefs

Columns 1..2 are A002995, A060404.
Rows 1..2 are A003239(n-1), A103943.
Antidiagonal sums are A103937.
Cf. A269920 (rooted), A379430 (sensed with no root).

A039791 Sequence arising in search for Legendre sequences.

Original entry on oeis.org

1, 1, 2, 4, 6, 14, 66, 95, 280, 1464, 2694, 10452, 41410, 95640, 323396, 1770963, 5405026, 13269146, 73663402, 164107650, 582538732, 3811895344, 7457847082, 30712068524, 151938788640, 353218528324, 1738341231644, 7326366290632, 17280039555348, 63583110959728
Offset: 1

Views

Author

Keywords

Comments

Number of bit strings of length L = 2n+1 and Hamming weight n (or n+1, as generated by Fletcher et al.) up to chord equivalence (i.e., up to color and general linear permutation x -> Ax+b mod L for A on Z/LZ* and b on Z/LZ--essentially a multiplicative necklace of phi(L) additive necklaces of L black and white beads where L is odd and the colors are as balanced as possible). The same strings are counted up to bracelet equivalence (x -> +-x+b mod L) at A007123, up to necklace equivalence (x -> x+b mod L) at A000108, and in full (x -> x) at A001700. - Travis Scott, Nov 24 2022

Examples

			From _Travis Scott_, Nov 24 2022: (Start)
If we decompose by weight the classes of period 2n+1 counted at A002729, a(n) appears as the twin towers of that triangle.
                              a(n)
                             |   |
                            (1) (1)
                         1   1   1   1
                     1   1   1   1   1   1
                 1   1   1   2   2   1   1   1
             1   1   2   3   4   4   3   2   1   1
         1   1   1   2   4   6   6   4   2   1   1  1
      1  1   1   3   7  10  14  14  10   7   3   1  1  1
   1  1  3   7  18  34  54  66  66  54  34  18   7  3  1  1
1  1  1  3  11  25  49  75  95  95  75  49  25  11  3  1  1  1. (End)
		

Crossrefs

Coincides with A002995 offset by -1 at the A005097-th terms.

Programs

  • Mathematica
    Module[{a,b,g,L,m,x,z,Z},Table[L=2n+1;Z=Sum[Sum[Product[g=L/GCD[L,(k-1)i+j];Subscript[x,#]^(1/#)&@If[k==1,g,m=MultiplicativeOrder[k,g];g/GCD[g,(k^m-1)/(k-1)]m],{i,L}]L/GCD[L,k-1],{j,GCD[L,k-1]}],{k,Select[Range@L,CoprimeQ[#,L]&]}]/L/EulerPhi@L/.Subscript[x,z_]->a^z+b^z;CoefficientList[Z,{a,b}][[n+1,n+2]],{n,30}]] (* Travis Scott, Nov 24 2022 *)

Formula

a(n) ~ C(2n+1, n)/(2n+1)/phi(2n+1)
Empirical: a(n) == 1 (mod 2) for 2n+1 of the form 2^k+1 but not of the form p^2, else == 0.

Extensions

More terms from Travis Scott, Nov 24 2022
Previous Showing 31-34 of 34 results.