cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A290772 Number of cyclic Gray codes of length 2n which include all-0 bit sequence and use the least possible number of bits.

Original entry on oeis.org

1, 2, 24, 12, 2640, 7536, 9408, 2688, 208445760, 1082368560, 4312566720, 12473296800, 24050669760, 27034640640, 13900259520, 1813091520
Offset: 1

Views

Author

Ashis Kumar Mal, Aug 10 2017

Keywords

Comments

From Andrey Zabolotskiy, Aug 23 2017: (Start)
The smallest number of bits needed is ceiling(log_2(n)). For larger number of bits, more Gray codes exist. Cyclic Gray codes of odd lengths do not exist, hence only even lengths are considered.
A003042 is a subsequence: A003042(n+1) = a(2^n).
a(n) is also the number of self-avoiding directed cycles of length 2n on a cube of the least possible dimension starting from the origin.
(End)

Examples

			Let n=3, so we count codes of length 6. Then at least 3 bits are needed to have such a code. There are a(3)=24 3-bit cyclic Gray codes of length 6:
000, 001, 011, 010, 110, 100
000, 001, 011, 111, 110, 100
000, 001, 011, 111, 110, 010
000, 001, 011, 111, 101, 100
000, 001, 101, 100, 110, 010
000, 001, 101, 111, 110, 100
000, 001, 101, 111, 110, 010
000, 001, 101, 111, 011, 010
000, 010, 011, 001, 101, 100
000, 010, 011, 111, 110, 100
000, 010, 011, 111, 101, 100
000, 010, 011, 111, 101, 001
000, 010, 110, 111, 101, 100
000, 010, 110, 111, 101, 001
000, 010, 110, 111, 011, 001
000, 010, 110, 100, 101, 001
000, 100, 101, 111, 110, 010
000, 100, 101, 111, 011, 010
000, 100, 101, 111, 011, 001
000, 100, 101, 001, 011, 010
000, 100, 110, 111, 101, 001
000, 100, 110, 111, 011, 010
000, 100, 110, 111, 011, 001
000, 100, 110, 010, 011, 001
		

Crossrefs

Programs

  • Python
    from math import log2, ceil
    def cyclic_gray(nb, n, a):
        if len(a) == n:
            if bin(a[-1]).count('1') == 1:
                return 1
            return 0
        r = 0
        for i in range(nb):
            x = a[-1] ^ (1<Andrey Zabolotskiy, Aug 23 2017

Extensions

a(7)-a(8) and name from Andrey Zabolotskiy, Aug 23 2017
a(9)-a(13) from Ashis Kumar Mal, Sep 02 2017
a(14)-a(16) from Thomas König, Jan 22 2022

A259839 Number of order-preserving Hamiltonian paths in the n-cube (Gray codes); see the comments for the precise definition of order-preserving.

Original entry on oeis.org

1, 1, 1, 1, 1, 10, 123, 1492723
Offset: 0

Views

Author

Torsten Muetze, Jul 06 2015

Keywords

Comments

An order-preserving Hamiltonian path in the n-cube is a listing S_1,...,S_N of all N:=2^n many subsets of [n]:={1,2,...,n}, such that if S_j is a subset of S_i then j <= i+1. For the counting we ignore paths that differ only by renaming elements of the ground set (=automorphisms of the n-cube), i.e., without loss of generality every such path starts as follows: S_1={}, S_2={1}, S_3={1,2}, S_4={2}, S_5={2,3}, S_6={3}, S_7={3,4}, S_8={4},..., S_{2n-2}={n-1}, S_{2n-1}={n-1,n}, S_{2n}={n} (after visiting the set {n}, there are multiple ways to proceed).
It is shown in [Felsner, Trotter 95] that an order-preserving Hamiltonian path is level-accurate in the following sense: After visiting a set of size k, the path will never visit a set of size (k-2) (*).
For odd n we will have S_N={1,2,...,n} (i.e., |S_N|=n) and for even n we will have |S_N|=n-1.
Hamiltonian paths that have property (*) have been constructed in [Savage, Winkler 95] for all n (but these paths are not order-preserving).
For n=8,9,10 we know that a(n)>=1. It is unknown whether a(n)>=1 for n>=11 (i.e., it is not known whether such order-preserving paths exist). Some partial results have been obtained in [Biro, Howard 09].

Examples

			For n=4 the a(4)=1 solution is S_1={}, S_2={1}, S_3={1,2}, S_4={2}, S_5={2,3}, S_6={3}, S_7={3,4}, S_8={4}, S_9={2,4}, S_10={1,2,4}, S_11={1,4}, S_12={1,3,4}, S_13={1,3}, S_14={1,2,3}, S_15={1,2,3,4}, S_16={2,3,4}.
		

Crossrefs

Previous Showing 11-12 of 12 results.