cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-43 of 43 results.

A131812 Sum of all n-digit Woodall numbers.

Original entry on oeis.org

8, 86, 1437, 6654, 81917, 827389, 17956860, 157286397, 1434451965, 12884901885, 114353504253, 1005022347261, 8761733283837, 166026255794172, 1337006139375613, 11434920928870397, 97390341941886973, 1799188051134513148, 14231374822490767357, 119903836479112085501
Offset: 1

Views

Author

Parthasarathy Nambi, Oct 23 2007

Keywords

Examples

			Sum of all 1-digit Woodall numbers is 1 + 7 = 8.
Sum of all 2-digit Woodall numbers is 23 + 63 = 86.
Sum of all 3-digit Woodall numbers is 159 + 383 + 895 = 1437.
		

Crossrefs

Cf. A003261.

Programs

  • Mathematica
    digNum[n_] := Length @ IntegerDigits[n]; woodall[n_] := n * 2^n - 1; digCount = 0; sum = 0; cumsum = {}; Do[w = woodall[n]; If[digNum[w] > digCount, digCount++; AppendTo[cumsum, sum]]; sum += w, {n, 1, 65}]; Differences[cumsum] (* Amiram Eldar, Nov 30 2019 *)

Extensions

More terms from Amiram Eldar, Nov 30 2019

A137810 a(n) = 2^(2^n+n) - 1.

Original entry on oeis.org

1, 7, 63, 2047, 1048575, 137438953471, 1180591620717411303423, 43556142965880123323311949751266331066367, 29642774844752946028434172162224104410437116074403984394101141506025761187823615
Offset: 0

Views

Author

Ant King, Feb 12 2008

Keywords

Comments

An integer is simultaneously a Mersenne number and a Woodall number if and only if it is a member of this sequence. Hence this sequence is the intersection of A000225 and A003261.

Examples

			The fourth integer which is both a Mersenne number and a Woodall number is 2047. Hence a(3)=2047 (as the offset is zero).
		

Crossrefs

Programs

  • Mathematica
    2^(2^#+#)-1 &/@Range[0,8]

Formula

a(n) = 2^(2^n+n)-1 = A000225(2^n+n) = A003261(2^n).

A382447 Number of positive k <= n such that k*2^n - 1 is prime.

Original entry on oeis.org

0, 2, 2, 2, 2, 3, 2, 1, 1, 3, 3, 2, 3, 2, 2, 4, 6, 3, 1, 3, 3, 0, 1, 0, 1, 1, 2, 3, 2, 3, 4, 2, 2, 1, 5, 2, 4, 2, 1, 3, 4, 3, 4, 2, 2, 3, 2, 3, 2, 3, 3, 3, 4, 5, 2, 2, 3, 1, 3, 3, 3, 4, 3, 1, 0, 1, 2, 1, 4, 3, 3, 5, 3, 3, 6, 2, 3, 3, 3, 2, 3, 1, 1, 1, 3, 1, 2, 2, 2, 2, 3, 3, 2, 3, 2, 3, 2, 3, 3, 2
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 26 2025

Keywords

Crossrefs

Cf. A061411 (indices of 0s), A061414 (indices of 1s).

Programs

  • Magma
    [#[k: k in [1..n] | IsPrime(k*2^n-1)]: n in [1..100]];
  • Mathematica
    a[n_]:=Length[Select[Range[n],PrimeQ[#*2^n-1] &]]; Array[a,100] (* Stefano Spezia, Mar 26 2025 *)
Previous Showing 41-43 of 43 results.