cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-45 of 45 results.

A123037 Prime sums of 8 positive 5th powers.

Original entry on oeis.org

101, 163, 281, 467, 523, 647, 827, 1031, 1069, 1093, 1217, 1249, 1459, 1733, 1999, 2389, 3163, 3319, 3467, 3529, 3623, 3709, 3803, 3889, 4217, 4373, 4397, 4639, 4943, 5209, 5333, 5693, 5849, 6263, 6287, 6529, 6653, 6833, 7013, 7411, 7583, 7907, 8087, 8329
Offset: 1

Views

Author

Jonathan Vos Post, Sep 24 2006

Keywords

Comments

Primes in the sumset {A000584 + A000584 + A000584 + A000584 + A000584 + A000584 + A000584 + A000584}.
There must be an odd number of odd terms in the sum, either one even and seven odd (as with 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 3^5 and 523 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 3^5 + 3^5), three even and 5 odd terms (as with 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5), five even and 3 odd terms (as with 647 = 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5 + 3^5) or seven even terms and one odd term (as with 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5). The sum of two positive 5th powers (A003347), other than 2 = 1^5 + 1^5, cannot be prime.

Examples

			a(1) = 101 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5.
a(2) = 163 = 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5.
a(3) = 281 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 3^5.
a(4) = 467 = 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5.
a(5) = 523 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 3^5 + 3^5.
a(6) = 647 = 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5 + 3^5.
		

Crossrefs

Programs

  • Mathematica
    up = 10^4; q = Range[up^(1/5)]^5; a = {0}; Do[b = Select[ Union@ Flatten@ Table[e + a, {e, q}], # <= up &]; a = b, {k, 8}]; Select[a, PrimeQ] (* Giovanni Resta, Jun 13 2016 *)

Formula

A000040 INTERSECTION A003353.

Extensions

More terms from Alois P. Heinz, Aug 12 2015

A123038 Prime sums of 9 positive 5th powers.

Original entry on oeis.org

71, 251, 257, 313, 499, 617, 797, 859, 977, 1039, 1063, 1187, 1249, 1367, 1429, 1523, 1609, 1789, 1913, 2179, 2273, 2297, 2539, 2663, 2843, 3023, 3109, 3257, 3319, 3413, 3499, 3593, 3617, 3803, 4373, 4733, 4889, 5179, 5303, 5483, 5639, 5881, 6257, 6389, 6451
Offset: 1

Views

Author

Jonathan Vos Post, Sep 24 2006

Keywords

Comments

Primes in the sumset {A000584 + A000584 + A000584 + A000584 + A000584 + A000584 + A000584 + A000584}.
There must be an odd number of odd terms in the sum, either nine odd (as with 251 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 3^5 and 977 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 3^5 + 3^5 + 3^5 + 3^5), two even and seven odd (as with 71 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 and 313 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 3^5), four even and 5 odd terms (as with xxxx), six even and 3 odd terms (as with 3803 = 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5 + 3^5 + 5^5) or eight even terms and one odd term (as with 257 = 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 and 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5). The sum of two positive 5th powers (A003347), other than 2 = 1^5 + 1^5, cannot be prime.

Examples

			a(1) = 71 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5.
a(2) = 251 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 3^5.
a(3) = 257 = 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5.
a(4) = 313 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 3^5.
a(5) = 499 = 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5
a(9) = 977 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 3^5 + 3^5 + 3^5 + 3^5.
		

Crossrefs

Programs

  • Mathematica
    up = 10^4; q = Range[up^(1/5)]^5; a = {0}; Do[b = Select[ Union@ Flatten@ Table[e + a, {e, q}], # <= up &]; a = b, {k, 9}]; Select[a, PrimeQ] (* Giovanni Resta, Jun 13 2016 *)

Formula

A000040 INTERSECTION A003354.

Extensions

More terms from Alois P. Heinz, Aug 12 2015

A123039 Prime sums of 11 positive 5th powers.

Original entry on oeis.org

11, 73, 197, 439, 557, 563, 619, 743, 1103, 1283, 1307, 1493, 1549, 2243, 2251, 2399, 2423, 2579, 2969, 3001, 3259, 3329, 3391, 3539, 3571, 3719, 3923, 4079, 4289, 4493, 4649, 4673, 5039, 5281, 5399, 5641, 5851, 6211, 6359, 6367, 6421, 6563, 6719, 6781, 6961
Offset: 1

Views

Author

Jonathan Vos Post, Sep 24 2006

Keywords

Comments

Primes in the sumset {A000584 + A000584 + A000584 + A000584 + A000584 + A000584 + A000584 + A000584 + A000584 + A000584}.
There must be an odd number of odd terms in the sum, either eleven odd (as with 11 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5), two even and nine odd (as with 73 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 and 557 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 3^5 + 3^5), four even and seven odd (as with 619 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5 + 3^5), six even and 5 odd terms (as with 197 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 and 439 = 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5), eight even and 3 odd terms (as with 743 = 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5 + 3^5) or ten even terms and one odd term (as with 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5). The sum of two positive 5th powers (A003347), other than 2 = 1^5 + 1^5, cannot be prime.

Examples

			a(1) = 11 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5.
a(2) = 73 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5.
a(3) = 197 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5.
a(4) = 439 = 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5.
a(5) = 557 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 3^5 + 3^5.
a(6) = 563 = 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5.
a(7) = 619 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5 + 3^5.
a(8) = 743 = 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5 + 3^5.
		

Crossrefs

Programs

  • Mathematica
    up = 6961; q = Range[up^(1/5)]^5; a = {0}; Do[b = Select[Union@ Flatten@ Table[e + a, {e, q}], # <= up &]; a = b, {k, 11}]; Select[a, PrimeQ] (* Giovanni Resta, Jun 12 2016 *)

Formula

A000040 INTERSECTION A003356.

Extensions

More terms from Alois P. Heinz, Aug 12 2015

A123040 Prime sums of 12 positive 5th powers.

Original entry on oeis.org

43, 167, 229, 347, 353, 409, 769, 1097, 1277, 1283, 1439, 1619, 1823, 1861, 1979, 2003, 2089, 2213, 2221, 2393, 2549, 2579, 2729, 2791, 2939, 2971, 3001, 3119, 3167, 3181, 3229, 3299, 3323, 3329, 3361, 3533, 3541, 3571, 3697, 3931, 4049, 4079, 4111, 4159, 4259
Offset: 1

Views

Author

Jonathan Vos Post, Sep 24 2006

Keywords

Comments

Primes in the sumset {A000584 + A000584 + A000584 + A000584 + A000584 + A000584 + A000584 + A000584 + A000584 + A000584 + A000584 + A000584}. There must be an odd number of odd terms in the sum, either one even and eleven odd (as with 11 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 and 769 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 3^5 + 3^5 + 3^5), three even and nine odd (as with 347 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 3^5), five even and seven odd (as with 167 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 and 409 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5), seven even and 5 odd terms (as with 229 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5), nine even and 3 odd terms (as with 161341 = 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 11^5) or eleven even terms and one odd term (as with 353 = 1^ 5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5). The sum of two positive 5th powers (A003347), other than 2 = 1^5 + 1^5, cannot be prime.

Examples

			a(1) = 43 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5.
a(2) = 167 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5.
a(3) = 229 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5.
a(4) = 347 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 3^5.
a(5) = 353 = 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5.
a(6) = 409 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5.
a(7) = 769 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 3^5 + 3^5 + 3^5.
		

Crossrefs

Programs

  • Maple
    N:= 10000: # to get all terms <= N
    B:= {seq(i^5,i=1..floor(N^(1/5)))}:
    B2:= select(`<=`,{seq(seq(b+c,b=B),c=B)},N):
    B4:= select(`<=`,{seq(seq(b+c,b=B2),c=B2)},N):
    B8:= select(`<=`,{seq(seq(b+c,b=B4),c=B4)},N):
    B12:= select(`<=`,{seq(seq(b+c,b=B4),c=B8)},N):
    sort(select(isprime,convert(B12,list))); # Robert Israel, Aug 10 2015

Formula

A000040 INTERSECTION A003357.

Extensions

More terms from Matthew House, Aug 10 2015

A123043 Prime sums of 10 positive 5th powers.

Original entry on oeis.org

41, 103, 227, 283, 587, 829, 953, 1009, 1033, 1399, 1493, 1523, 1579, 1759, 2063, 2087, 2243, 2273, 2633, 2789, 2969, 3079, 3203, 3359, 3407, 3413, 3469, 3539, 3593, 3929, 4133, 4157, 4219, 4289, 4523, 4679, 4703, 5101, 5273, 5851, 6203, 6389, 6421, 6569, 6991
Offset: 1

Views

Author

Jonathan Vos Post, Sep 24 2006

Keywords

Comments

Primes in the sumset {A000584 + A000584 + A000584 + A000584 + A000584 + A000584 + A000584 + A000584 + A000584 + A000584}.
There must be an odd number of odd terms in the sum, either one even and nine odd (as with 41 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 and 283 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 3^5), three even and seven odd (as with 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 and 587 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 3^5 + 3^5), five even and 5 odd terms (as with 17939 = 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 3^5 + 3^5 + 3^5 + 3^5 + 7^5), seven even and 3 odd terms (as with 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5) or nine even terms and one odd term (as with 3413 = 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 5^5). The sum of two positive 5th powers (A003347), other than 2 = 1^5 + 1^5, cannot be prime.

Examples

			a(1) = 41 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5.
a(2) = 103 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5.
a(3) = 227 = 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5.
a(4) = 283 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 3^5.
a(5) = 587 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 3^5 + 3^5.
		

Crossrefs

Programs

  • Mathematica
    up = 10^4; q = Range[up^(1/5)]^5; a = {0}; Do[b = Select[ Union@ Flatten@ Table[e + a, {e, q}], # <= up &]; a = b, {k, 10}]; Select[a, PrimeQ] (* Giovanni Resta, Jun 13 2016 *)

Formula

A000040 INTERSECTION A003355.

Extensions

More terms from Alois P. Heinz, Aug 12 2015
Previous Showing 41-45 of 45 results.