A123043 Prime sums of 10 positive 5th powers.
41, 103, 227, 283, 587, 829, 953, 1009, 1033, 1399, 1493, 1523, 1579, 1759, 2063, 2087, 2243, 2273, 2633, 2789, 2969, 3079, 3203, 3359, 3407, 3413, 3469, 3539, 3593, 3929, 4133, 4157, 4219, 4289, 4523, 4679, 4703, 5101, 5273, 5851, 6203, 6389, 6421, 6569, 6991
Offset: 1
Examples
a(1) = 41 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5. a(2) = 103 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5. a(3) = 227 = 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5. a(4) = 283 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 3^5. a(5) = 587 = 1^5 + 1^5 + 1^5 + 1^5 + 1^5 + 2^5 + 2^5 + 2^5 + 3^5 + 3^5.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
up = 10^4; q = Range[up^(1/5)]^5; a = {0}; Do[b = Select[ Union@ Flatten@ Table[e + a, {e, q}], # <= up &]; a = b, {k, 10}]; Select[a, PrimeQ] (* Giovanni Resta, Jun 13 2016 *)
Extensions
More terms from Alois P. Heinz, Aug 12 2015
Comments