cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A338575 Number of even permutations on n letters that have a root.

Original entry on oeis.org

1, 3, 9, 45, 270, 1680, 11340, 108108, 1005480, 10929600, 114845445, 1543647105, 20367547200, 305087041350, 4428663384600, 76921682828760, 1322260935065280, 24987504206574000, 464475474578648925, 9916256376966427425, 209858853988540310400, 4809961676643673161150
Offset: 2

Views

Author

Michel Marcus, Nov 04 2020

Keywords

Crossrefs

Cf. A003483.

Programs

  • Mathematica
    m = 24;
    (Sqrt[(1+x)/(1-x)] Product[Cosh[x^(2k)/(2k)], {k, 1, m}] - (1/2) Product[1 + x^(2k-1)/(2k-1), {k, 1, m}] (Product[Cosh[x^(2k)/(2k)], {k, 1, m}] - Product[Cos[x^(2k)/(2k)], {k, 1, m}]) + O[x]^m // CoefficientList[#, x]&)Range[0, m-1]! // Drop[#, 2]& (* Jean-François Alcover, Nov 17 2020 *)
  • PARI
    my(N=30, x='x+O('x^N), v=Vec(serlaplace(sqrt((1+x)/(1-x))*prod(k=1, N, cosh(x^(2*k)/(2*k))) - (1/2)*prod(k=1, N, 1+x^(2*k-1)/(2*k-1))*(prod(k=1, N, cosh(x^(2*k)/(2*k))) - prod(k=1, N, cos(x^(2*k)/(2*k))))))); vector(#v-2, k, v[k+2])

Formula

E.g.f.: sqrt((1+x)/(1-x))*Product_{k>=1} cosh(x^(2*k)/(2*k)) - (1/2)*Product_{k>=1} (1+x^(2*k-1)/(2*k-1)) * (Product_{k>=1} cosh(x^(2*k)/(2*k)) - Product_{k>=1} cos(x^(2*k)/(2*k))) for n >= 2.

A373691 Triangle read by rows T(n, k) is the number of permutations on n elements whose square has k descents, for n >= 1 and 0 <= k <= n-1.

Original entry on oeis.org

1, 2, 0, 4, 2, 0, 10, 6, 6, 2, 26, 22, 48, 22, 2, 76, 68, 276, 260, 40, 0, 232, 214, 1384, 2204, 944, 62, 0, 764, 672, 6240, 16172, 13212, 3048, 200, 12, 2620, 2204, 27096, 103588, 145160, 70740, 10936, 524, 12, 9496, 7354, 113722, 612178, 1338370, 1145614, 364366, 36838, 862, 0
Offset: 1

Views

Author

Michel Marcus, Jun 14 2024

Keywords

Examples

			Triangle begins:
    1;
    2,   0;
    4,   2,    0;
   10,   6,    6,    2;
   26,  22,   48,   22,   2;
   76,  68,  276,  260,  40,  0;
  232, 214, 1384, 2204, 944, 62, 0;
  ...
		

Crossrefs

Cf. A000085 (1st column), A000142 (row sums), A037224 (right diagonal).
Cf. A003483 (square permutations), A008292.

Programs

  • PARI
    sq(p) = vector(#p, k, p[p[k]]);
    nbd(p) = sum(i=1, #p-1, p[i+1] < p[i]);
    row(n) = my(v=vector(n)); for (i=1, n!, v[nbd(sq(numtoperm(n, i)))+1]++;); v;
Previous Showing 21-22 of 22 results.