A305380 Tribonacci representation of 2^n, written in base 10.
1, 2, 4, 9, 19, 41, 88, 195, 418, 1033, 2195, 4705, 10282, 21850, 49160, 104465, 223780, 550294, 1186344, 2525345, 5514438, 11817057, 26297040, 56201282, 138856076, 295217708, 632609378, 1382640428, 2974062096, 6603081730, 14149570820, 34976354857, 74361996963
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2000
Programs
-
Maple
T:= proc(n) T(n):= (<<0|1|0>, <0|0|1>, <1|1|1>>^n)[2, 3] end: b:= proc(n) option remember; local j; if n=0 then 0 else for j from 2 while T(j+1)<=n do od; b(n-T(j))+2^(j-2) fi end: a:= n-> b(2^n): seq(a(n), n=0..35); # Alois P. Heinz, Jun 12 2018
-
Python
def A305380(n): m, tlist, s = 2**n, [1,2,4], 0 while tlist[-1]+tlist[-2]+tlist[-3] <= m: tlist.append(tlist[-1]+tlist[-2]+tlist[-3]) for d in tlist[::-1]: s *= 2 if d <= m: s += 1 m -= d return s # Chai Wah Wu, Jun 12 2018
Extensions
a(9)-a(24) from Robert Israel, Jun 12 2018
Terms a(25) and beyond from Alois P. Heinz, Jun 12 2018
Comments