A031419 Numbers k such that the continued fraction for sqrt(k) has odd period and if the last term of the periodic part is deleted then there are a pair of central terms both equal to 6.
109, 281, 865, 922, 1277, 1613, 1769, 1933, 2161, 2341, 2789, 3098, 3653, 3961, 4285, 4457, 5065, 5153, 5713, 5858, 5954, 6101, 6458, 6554, 6709, 7129, 7349, 7681, 8237, 8941, 9242, 9305, 9677, 10177, 10498, 10565, 10693, 10762, 11162, 11365, 11698
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000 [shifted by _Georg Fischer_, Jun 23 2019]
Programs
-
Mathematica
n = 1; t = {}; While[Length[t] < 50, n++; If[! IntegerQ[Sqrt[n]], c = ContinuedFraction[Sqrt[n]]; len = Length[c[[2]]]; If[OddQ[len] && c[[2, (len + 1)/2]] == 6 && c[[2, (len + 1)/2 - 1]] == 6, AppendTo[t, n]]]]; t (* T. D. Noe, Apr 04 2014; corrected by Georg Fischer, Jun 23 2019 *)
Extensions
a(1) corrected by T. D. Noe, Apr 04 2014
a(1) = 10 removed by Georg Fischer, Jun 23 2019
Comments