cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 57 results. Next

A169455 Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^33 = I.

Original entry on oeis.org

1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204890, 34867844010, 313810596090, 2824295364810, 25418658283290, 228767924549610, 2058911320946490, 18530201888518410, 166771816996665690
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003952, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 +
2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 +
2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 +
2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(36*t^33 - 8*t^32 - 8*t^31 - 8*t^30 - 8*t^29 - 8*t^28 - 8*t^27 -
8*t^26 - 8*t^25 - 8*t^24 - 8*t^23 - 8*t^22 - 8*t^21 - 8*t^20 - 8*t^19 -
8*t^18 - 8*t^17 - 8*t^16 - 8*t^15 - 8*t^14 - 8*t^13 - 8*t^12 - 8*t^11 -
8*t^10 - 8*t^9 - 8*t^8 - 8*t^7 - 8*t^6 - 8*t^5 - 8*t^4 - 8*t^3 - 8*t^2 -
8*t + 1)

A169503 Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^34 = I.

Original entry on oeis.org

1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204890, 34867844010, 313810596090, 2824295364810, 25418658283290, 228767924549610, 2058911320946490, 18530201888518410, 166771816996665690
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003952, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 +
2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 +
2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 +
2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 +
2*t + 1)/(36*t^34 - 8*t^33 - 8*t^32 - 8*t^31 - 8*t^30 - 8*t^29 - 8*t^28
- 8*t^27 - 8*t^26 - 8*t^25 - 8*t^24 - 8*t^23 - 8*t^22 - 8*t^21 - 8*t^20
- 8*t^19 - 8*t^18 - 8*t^17 - 8*t^16 - 8*t^15 - 8*t^14 - 8*t^13 - 8*t^12
- 8*t^11 - 8*t^10 - 8*t^9 - 8*t^8 - 8*t^7 - 8*t^6 - 8*t^5 - 8*t^4 -
8*t^3 - 8*t^2 - 8*t + 1)

A169551 Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^35 = I.

Original entry on oeis.org

1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204890, 34867844010, 313810596090, 2824295364810, 25418658283290, 228767924549610, 2058911320946490, 18530201888518410, 166771816996665690
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003952, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 +
2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 +
2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 +
2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3
+ 2*t^2 + 2*t + 1)/(36*t^35 - 8*t^34 - 8*t^33 - 8*t^32 - 8*t^31 - 8*t^30
- 8*t^29 - 8*t^28 - 8*t^27 - 8*t^26 - 8*t^25 - 8*t^24 - 8*t^23 - 8*t^22
- 8*t^21 - 8*t^20 - 8*t^19 - 8*t^18 - 8*t^17 - 8*t^16 - 8*t^15 - 8*t^14
- 8*t^13 - 8*t^12 - 8*t^11 - 8*t^10 - 8*t^9 - 8*t^8 - 8*t^7 - 8*t^6 -
8*t^5 - 8*t^4 - 8*t^3 - 8*t^2 - 8*t + 1)

A170019 Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^36 = I.

Original entry on oeis.org

1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204890, 34867844010, 313810596090, 2824295364810, 25418658283290, 228767924549610, 2058911320946490, 18530201888518410, 166771816996665690
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003952, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    With[{num=Total[2t^Range[35]]+t^36+1,den=Total[-8 t^Range[35]]+36t^36+ 1},CoefficientList[Series[num/den,{t,0,20}],t]] (* Harvey P. Dale, Jun 14 2014 *)

Formula

G.f. (t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 +
2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 +
2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 +
2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4
+ 2*t^3 + 2*t^2 + 2*t + 1)/(36*t^36 - 8*t^35 - 8*t^34 - 8*t^33 - 8*t^32
- 8*t^31 - 8*t^30 - 8*t^29 - 8*t^28 - 8*t^27 - 8*t^26 - 8*t^25 - 8*t^24
- 8*t^23 - 8*t^22 - 8*t^21 - 8*t^20 - 8*t^19 - 8*t^18 - 8*t^17 - 8*t^16
- 8*t^15 - 8*t^14 - 8*t^13 - 8*t^12 - 8*t^11 - 8*t^10 - 8*t^9 - 8*t^8 -
8*t^7 - 8*t^6 - 8*t^5 - 8*t^4 - 8*t^3 - 8*t^2 - 8*t + 1)

A170067 Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^37 = I.

Original entry on oeis.org

1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204890, 34867844010, 313810596090, 2824295364810, 25418658283290, 228767924549610, 2058911320946490, 18530201888518410, 166771816996665690
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003952, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 +
2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 +
2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 +
2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 +
2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(36*t^37 - 8*t^36 - 8*t^35 -
8*t^34 - 8*t^33 - 8*t^32 - 8*t^31 - 8*t^30 - 8*t^29 - 8*t^28 - 8*t^27 -
8*t^26 - 8*t^25 - 8*t^24 - 8*t^23 - 8*t^22 - 8*t^21 - 8*t^20 - 8*t^19 -
8*t^18 - 8*t^17 - 8*t^16 - 8*t^15 - 8*t^14 - 8*t^13 - 8*t^12 - 8*t^11 -
8*t^10 - 8*t^9 - 8*t^8 - 8*t^7 - 8*t^6 - 8*t^5 - 8*t^4 - 8*t^3 - 8*t^2 -
8*t + 1)

A170115 Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^38 = I.

Original entry on oeis.org

1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204890, 34867844010, 313810596090, 2824295364810, 25418658283290, 228767924549610, 2058911320946490, 18530201888518410, 166771816996665690
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003952, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 +
2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 +
2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 +
2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 +
2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(36*t^38 - 8*t^37 -
8*t^36 - 8*t^35 - 8*t^34 - 8*t^33 - 8*t^32 - 8*t^31 - 8*t^30 - 8*t^29 -
8*t^28 - 8*t^27 - 8*t^26 - 8*t^25 - 8*t^24 - 8*t^23 - 8*t^22 - 8*t^21 -
8*t^20 - 8*t^19 - 8*t^18 - 8*t^17 - 8*t^16 - 8*t^15 - 8*t^14 - 8*t^13 -
8*t^12 - 8*t^11 - 8*t^10 - 8*t^9 - 8*t^8 - 8*t^7 - 8*t^6 - 8*t^5 - 8*t^4
- 8*t^3 - 8*t^2 - 8*t + 1)

A170163 Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^39 = I.

Original entry on oeis.org

1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204890, 34867844010, 313810596090, 2824295364810, 25418658283290, 228767924549610, 2058911320946490, 18530201888518410, 166771816996665690
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003952, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 +
2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 +
2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 +
2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 +
2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(36*t^39 -
8*t^38 - 8*t^37 - 8*t^36 - 8*t^35 - 8*t^34 - 8*t^33 - 8*t^32 - 8*t^31 -
8*t^30 - 8*t^29 - 8*t^28 - 8*t^27 - 8*t^26 - 8*t^25 - 8*t^24 - 8*t^23 -
8*t^22 - 8*t^21 - 8*t^20 - 8*t^19 - 8*t^18 - 8*t^17 - 8*t^16 - 8*t^15 -
8*t^14 - 8*t^13 - 8*t^12 - 8*t^11 - 8*t^10 - 8*t^9 - 8*t^8 - 8*t^7 -
8*t^6 - 8*t^5 - 8*t^4 - 8*t^3 - 8*t^2 - 8*t + 1)

A170211 Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^40 = I.

Original entry on oeis.org

1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204890, 34867844010, 313810596090, 2824295364810, 25418658283290, 228767924549610, 2058911320946490, 18530201888518410, 166771816996665690
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003952, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 +
2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 +
2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 +
2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 +
2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(36*t^40 - 8*t^39 - 8*t^38 - 8*t^37 - 8*t^36 - 8*t^35 - 8*t^34 -
8*t^33 - 8*t^32 - 8*t^31 - 8*t^30 - 8*t^29 - 8*t^28 - 8*t^27 - 8*t^26 -
8*t^25 - 8*t^24 - 8*t^23 - 8*t^22 - 8*t^21 - 8*t^20 - 8*t^19 - 8*t^18 -
8*t^17 - 8*t^16 - 8*t^15 - 8*t^14 - 8*t^13 - 8*t^12 - 8*t^11 - 8*t^10 -
8*t^9 - 8*t^8 - 8*t^7 - 8*t^6 - 8*t^5 - 8*t^4 - 8*t^3 - 8*t^2 - 8*t + 1)

A170259 Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^41 = I.

Original entry on oeis.org

1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204890, 34867844010, 313810596090, 2824295364810, 25418658283290, 228767924549610, 2058911320946490, 18530201888518410, 166771816996665690
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003952, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 +
2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 +
2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 +
2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 +
2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(36*t^41 - 8*t^40 - 8*t^39 - 8*t^38 - 8*t^37 - 8*t^36 - 8*t^35 -
8*t^34 - 8*t^33 - 8*t^32 - 8*t^31 - 8*t^30 - 8*t^29 - 8*t^28 - 8*t^27 -
8*t^26 - 8*t^25 - 8*t^24 - 8*t^23 - 8*t^22 - 8*t^21 - 8*t^20 - 8*t^19 -
8*t^18 - 8*t^17 - 8*t^16 - 8*t^15 - 8*t^14 - 8*t^13 - 8*t^12 - 8*t^11 -
8*t^10 - 8*t^9 - 8*t^8 - 8*t^7 - 8*t^6 - 8*t^5 - 8*t^4 - 8*t^3 - 8*t^2 -
8*t + 1)

A170307 Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^42 = I.

Original entry on oeis.org

1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204890, 34867844010, 313810596090, 2824295364810, 25418658283290, 228767924549610, 2058911320946490, 18530201888518410, 166771816996665690
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003952, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    With[{num=Total[2t^Range[41]]+t^42+1,den=Total[-8 t^Range[41]]+36t^42+ 1},CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, Aug 25 2013 *)
    coxG[{42,36,-8}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jan 30 2025 *)

Formula

G.f. (t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 +
2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 +
2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 +
2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 +
2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 +
2*t + 1)/(36*t^42 - 8*t^41 - 8*t^40 - 8*t^39 - 8*t^38 - 8*t^37 - 8*t^36
- 8*t^35 - 8*t^34 - 8*t^33 - 8*t^32 - 8*t^31 - 8*t^30 - 8*t^29 - 8*t^28
- 8*t^27 - 8*t^26 - 8*t^25 - 8*t^24 - 8*t^23 - 8*t^22 - 8*t^21 - 8*t^20
- 8*t^19 - 8*t^18 - 8*t^17 - 8*t^16 - 8*t^15 - 8*t^14 - 8*t^13 - 8*t^12
- 8*t^11 - 8*t^10 - 8*t^9 - 8*t^8 - 8*t^7 - 8*t^6 - 8*t^5 - 8*t^4 -
8*t^3 - 8*t^2 - 8*t + 1)
Previous Showing 41-50 of 57 results. Next