cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 91 results. Next

A348945 a(n) = A348944(n) - sigma(n), where A348944 is the arithmetic mean of A003959 and A034448, and sigma is the sum of divisors function.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 6, 0, 0, 0, 0, 75, 0, 0, 0, 6, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 72, 0, 0, 0, 0, 0, 18, 0, 24, 0, 0, 0, 0, 0, 0, 0, 270, 0, 0, 0, 0, 0, 0, 0, 66, 0, 0, 0, 0, 0, 0, 0, 108, 48, 0, 0, 0, 0, 0, 0, 36, 0, 0, 0, 0, 0, 0, 0, 300, 0, 0, 0, 10
Offset: 1

Views

Author

Antti Karttunen, Nov 05 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := (p + 1)^e; f3[p_, e_] := p^e + 1; a[1] = 0; a[n_] := (Times @@ f2 @@@ (f = FactorInteger[n]) + Times @@ f3 @@@ f) / 2 - Times @@ f1 @@@ f; Array[a, 100] (* Amiram Eldar, Nov 05 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A034448(n) = { my(f = factor(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); };
    A348944(n) = ((1/2)*(A003959(n)+A034448(n)));
    A348945(n) = (A348944(n)-sigma(n));

Formula

a(n) = A348944(n) - A000203(n) = ((1/2) * (A003959(n)+A034448(n))) - A000203(n).
a(n) = (1/2) * (A348029(n)-A048146(n)).

A348949 a(n) = A003959(A276086(n)), where A003959 is multiplicative with a(p^e) = (p+1)^e, and A276086 gives the prime product form of primorial base expansion of n.

Original entry on oeis.org

1, 3, 4, 12, 16, 48, 6, 18, 24, 72, 96, 288, 36, 108, 144, 432, 576, 1728, 216, 648, 864, 2592, 3456, 10368, 1296, 3888, 5184, 15552, 20736, 62208, 8, 24, 32, 96, 128, 384, 48, 144, 192, 576, 768, 2304, 288, 864, 1152, 3456, 4608, 13824, 1728, 5184, 6912, 20736, 27648, 82944, 10368, 31104, 41472, 124416, 165888, 497664, 64
Offset: 0

Views

Author

Antti Karttunen, Nov 07 2021

Keywords

Crossrefs

Programs

  • PARI
    A348949(n) = { my(m=1, p=2); while(n, m *= ((1+p)^(n%p)); n = n\p; p = nextprime(1+p)); (m); };

Formula

a(n) = A003959(A276086(n)).
a(n) = A276086(n) + A348950(n).

A349355 Dirichlet convolution of A003958 with A063441 (Dirichlet inverse of A003959), where A003958 and A003959 are fully multiplicative with a(p) = p-1 and p+1 respectively.

Original entry on oeis.org

1, -2, -2, -2, -2, 4, -2, -2, -4, 4, -2, 4, -2, 4, 4, -2, -2, 8, -2, 4, 4, 4, -2, 4, -8, 4, -8, 4, -2, -8, -2, -2, 4, 4, 4, 8, -2, 4, 4, 4, -2, -8, -2, 4, 8, 4, -2, 4, -12, 16, 4, 4, -2, 16, 4, 4, 4, 4, -2, -8, -2, 4, 8, -2, 4, -8, -2, 4, 4, -8, -2, 8, -2, 4, 16, 4, 4, -8, -2, 4, -16, 4, -2, -8, 4, 4, 4, 4, -2, -16
Offset: 1

Views

Author

Antti Karttunen, Nov 16 2021

Keywords

Comments

Multiplicative because both A003958 and A063441 are.
In Dirichlet ring this sequence works as a kind of replacement operator which replaces the factor A003959 with factor A003958. For example, convolving this with A003968 (the Möbius transform of A003959) produces A003966, the Möbius transform of A003958.

Crossrefs

Cf. A003958, A003959, A003966, A003968, A063441, A349356 (Dirichlet inverse), A349357 (sum with it).
Cf. also A349382.

Programs

  • Mathematica
    f[p_, e_] := -2*(p - 1)^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 16 2021 *)
  • PARI
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A063441(n) = (moebius(n)*sigma(n)); \\ Also Dirichlet inverse of A003959.
    A349355(n) = sumdiv(n,d,A003958(n/d)*A063441(d));

Formula

a(n) = Sum_{d|n} A003958(n/d) * A063441(d).
Multiplicative with a(p^e) = -2*(p-1)^(e-1). - Amiram Eldar, Nov 16 2021

A349621 Dirichlet convolution of A003415 with the Dirichlet inverse of A003959.

Original entry on oeis.org

0, 1, 1, 1, 1, -2, 1, 0, 2, -2, 1, -3, 1, -2, -2, -4, 1, -5, 1, -3, -2, -2, 1, -4, 4, -2, 3, -3, 1, 3, 1, -16, -2, -2, -2, -7, 1, -2, -2, -4, 1, 3, 1, -3, -5, -2, 1, -4, 6, -9, -2, -3, 1, -12, -2, -4, -2, -2, 1, 5, 1, -2, -5, -48, -2, 3, 1, -3, -2, 3, 1, -8, 1, -2, -9, -3, -2, 3, 1, -4, 0, -2, 1, 5, -2, -2, -2, -4
Offset: 1

Views

Author

Antti Karttunen, Nov 25 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := e/p; d[1] = 0; d[n_] := n*Plus @@ f @@@ FactorInteger[n]; a[n_] := DivisorSum[n, MoebiusMu[#] * DivisorSigma[1, #] * d[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 25 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A063441(n) = (moebius(n)*sigma(n)); \\ Also Dirichlet inverse of A003959.
    A349621(n) = sumdiv(n,d,A003415(n/d)*A063441(d));

Formula

a(n) = Sum_{d|n} A003415(n/d) * A063441(d).

A348049 a(n) = A003959(n) / gcd(sigma(n), A003959(n)), where A003959 is multiplicative with a(p^e) = (p+1)^e and sigma is the sum of divisors function.

Original entry on oeis.org

1, 1, 1, 9, 1, 1, 1, 9, 16, 1, 1, 9, 1, 1, 1, 81, 1, 16, 1, 9, 1, 1, 1, 9, 36, 1, 8, 9, 1, 1, 1, 27, 1, 1, 1, 144, 1, 1, 1, 9, 1, 1, 1, 9, 16, 1, 1, 81, 64, 36, 1, 9, 1, 8, 1, 9, 1, 1, 1, 9, 1, 1, 16, 729, 1, 1, 1, 9, 1, 1, 1, 144, 1, 1, 36, 9, 1, 1, 1, 81, 256, 1, 1, 9, 1, 1, 1, 9, 1, 16, 1, 9, 1, 1, 1, 27, 1, 64
Offset: 1

Views

Author

Antti Karttunen, Oct 21 2021

Keywords

Comments

Not multiplicative. For example, a(196) = 192 != a(4) * a(49).

Crossrefs

Cf. A000203, A003959, A005117 (positions of 1's), A348029, A348047, A348048.
Cf. also A344697.

Programs

  • Mathematica
    f[p_, e_] := (p + 1)^e; a[1] = 1; a[n_] := (m = Times @@ f @@@ FactorInteger[n]) / GCD[m, DivisorSigma[1, n]]; Array[a, 100] (* Amiram Eldar, Oct 21 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348049(n) = { my(u=A003959(n)); (u/gcd(u, sigma(n))); };

Formula

a(n) = A003959(n) / A348047(n) = A003959(n) / gcd(A000203(n), A003959(n)).

A348929 a(n) = gcd(n, A003959(n)), where A003959 is multiplicative with a(p^e) = (p+1)^e.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 12, 1, 2, 3, 1, 1, 6, 1, 2, 1, 2, 1, 12, 1, 2, 1, 4, 1, 6, 1, 1, 3, 2, 1, 36, 1, 2, 1, 2, 1, 6, 1, 4, 3, 2, 1, 12, 1, 2, 3, 2, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 6, 1, 2, 3, 2, 1, 72, 1, 2, 3, 4, 1, 6, 1, 2, 1, 2, 1, 12, 1, 2, 3, 4, 1, 18, 7, 4, 1, 2, 5, 12, 1, 2, 3, 4, 1, 6, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Nov 07 2021

Keywords

Crossrefs

Differs from similar A126795 for the first time at n=36, where a(36) = 36, while A126795(36) = 12.

Programs

  • Mathematica
    f[p_, e_] := (p + 1)^e; a[n_] := GCD[n, Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Nov 07 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348929(n) = gcd(n, A003959(n));

Formula

a(n) = gcd(n, A003959(n)) = gcd(n, A348507(n)) = gcd(A003959(n), A348507(n)).

A348947 a(n) = A348944(n) / gcd(sigma(n), A348944(n)), where A348944 is the arithmetic mean of A003959 and A034448, and sigma is the sum of divisors function.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 49, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 23, 1, 1, 1, 1, 46, 1, 1, 1, 97, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 49, 1, 1, 1, 1, 1, 23, 1, 6, 1, 1, 1, 1, 1, 1, 1, 397, 1, 1, 1, 1, 1, 1, 1, 87, 1, 1, 1, 1, 1, 1, 1, 49, 169, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 46, 1, 1, 1, 227
Offset: 1

Views

Author

Antti Karttunen, Nov 05 2021

Keywords

Comments

Numerator of ratio A348944(n) / A000203(n).
This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 36 = 2^2 * 3^2, where a(36) = 97 <> 1 = a(4)*a(9).

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := (p + 1)^e; f3[p_, e_] := p^e + 1; a[1] = 1; a[n_] := (s = (Times @@ f2 @@@ (f = FactorInteger[n]) + Times @@ f3 @@@ f) / 2) / GCD[Times @@ f1 @@@ f, s]; Array[a, 100] (* Amiram Eldar, Nov 05 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A034448(n) = { my(f = factor(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); };
    A348944(n) = ((1/2)*(A003959(n)+A034448(n)));
    A348947(n) = { my(u=A348944(n)); (u/gcd(sigma(n),u)); };

Formula

a(n) = A348944(n) / A348946(n) = A348944(n) / gcd(A000203(n), A348944(n)).

A348948 a(n) = sigma(n) / gcd(sigma(n), A348944(n)), where A348944 is the arithmetic mean of A003959 and A034448, and sigma is the sum of divisors function.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 31, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 20, 1, 1, 1, 1, 21, 1, 1, 1, 91, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 31, 1, 1, 1, 1, 1, 20, 1, 5, 1, 1, 1, 1, 1, 1, 1, 127, 1, 1, 1, 1, 1, 1, 1, 65, 1, 1, 1, 1, 1, 1, 1, 31, 121, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 21, 1, 1, 1, 217
Offset: 1

Views

Author

Antti Karttunen, Nov 05 2021

Keywords

Comments

Denominator of ratio A348944(n) / A000203(n).
This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 36 = 2^2 * 3^2, where a(36) = 91 <> 1 = a(4)*a(9).

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := (p + 1)^e; f3[p_, e_] := p^e + 1; a[1] = 1; a[n_] := (s = Times @@ f1 @@@ (f = FactorInteger[n])) / GCD[s, (Times @@ f2 @@@ f + Times @@ f3 @@@ f) / 2]; Array[a, 100] (* Amiram Eldar, Nov 05 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A034448(n) = { my(f = factor(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); };
    A348944(n) = ((1/2)*(A003959(n)+A034448(n)));
    A348948(n) = { my(s=sigma(n)); (s/gcd(s,A348944(n))); };

Formula

a(n) = A000203(n) / A348946(n) = A000203(n) / gcd(A000203(n), A348944(n)).

A348950 a(n) = A348507(A276086(n)), where A348507(n) = A003959(n) - n, A003959 is multiplicative with a(p^e) = (p+1)^e, and A276086 gives the prime product form of primorial base expansion of n.

Original entry on oeis.org

0, 1, 1, 6, 7, 30, 1, 8, 9, 42, 51, 198, 11, 58, 69, 282, 351, 1278, 91, 398, 489, 1842, 2331, 8118, 671, 2638, 3309, 11802, 15111, 50958, 1, 10, 11, 54, 65, 258, 13, 74, 87, 366, 453, 1674, 113, 514, 627, 2406, 3033, 10674, 853, 3434, 4287, 15486, 19773, 67194, 5993, 22354, 28347, 98166, 126513, 418914, 15, 94, 109
Offset: 0

Views

Author

Antti Karttunen, Nov 06 2021

Keywords

Crossrefs

Programs

  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A348507(n) = (A003959(n) - n);
    A348950(n) = A348507(A276086(n));
    
  • PARI
    A348950(n) = { my(m1=1, m2=1, p=2); while(n, m1 *= (p^(n%p)); m2 *= ((1+p)^(n%p)); n = n\p; p = nextprime(1+p)); (m2-m1); };

Formula

a(n) = A348949(n) - A276086(n) = A348507(A276086(n)).

A348972 a(n) = gcd(A003959(n), A129283(n)), where A003959 is multiplicative with a(p^e) = (p+1)^e and A129283(n) is sum of n and its arithmetic derivative.

Original entry on oeis.org

1, 3, 4, 1, 6, 1, 8, 1, 1, 1, 12, 4, 14, 1, 1, 3, 18, 3, 20, 2, 1, 1, 24, 4, 1, 1, 2, 12, 30, 1, 32, 1, 1, 1, 1, 48, 38, 1, 1, 54, 42, 1, 44, 4, 12, 1, 48, 4, 1, 1, 1, 18, 54, 3, 1, 4, 1, 1, 60, 8, 62, 1, 2, 1, 1, 1, 68, 2, 1, 3, 72, 12, 74, 1, 2, 12, 1, 1, 80, 2, 1, 1, 84, 16, 1, 1, 1, 12, 90, 3, 1, 4, 1, 1, 1, 4, 98
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := e/p; f2[p_, e_] := (p + 1)^e; a[1] = 1; a[n_] := GCD[n*(1 + Plus @@ f1 @@@ (f = FactorInteger[n])), Times @@ f2 @@@ f]; Array[a, 100] (* Amiram Eldar, Nov 06 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348972(n) = gcd(A003959(n),(n+A003415(n)));

Formula

a(n) = gcd(A003959(n), A129283(n)) = gcd(A003959(n), n+A003415(n)).
a(n) = gcd(A003959(n), A348970(n)) = gcd(A129283(n), A348970(n)).
a(n) = A129283(n) / A348973(n) = A003959(n) / A348974(n).
Previous Showing 21-30 of 91 results. Next