cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 91 results. Next

A348973 Numerator of ratio A129283(n) / A003959(n), where A003959 is multiplicative with a(p^e) = (p+1)^e and A129283(n) is sum of n and its arithmetic derivative.

Original entry on oeis.org

1, 1, 1, 8, 1, 11, 1, 20, 15, 17, 1, 7, 1, 23, 23, 16, 1, 13, 1, 22, 31, 35, 1, 17, 35, 41, 27, 5, 1, 61, 1, 112, 47, 53, 47, 2, 1, 59, 55, 2, 1, 83, 1, 23, 7, 71, 1, 40, 63, 95, 71, 6, 1, 45, 71, 37, 79, 89, 1, 19, 1, 95, 57, 256, 83, 127, 1, 70, 95, 43, 1, 19, 1, 113, 65, 13, 95, 149, 1, 128, 189, 125, 1, 13, 107
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2021

Keywords

Comments

It is known that A129283(n) <= A003959(n) for all n (see A348970 for a proof), which implies that each ratio a(n)/A348974(n) is at most 1: 1/1, 1/1, 1/1, 8/9, 1/1, 11/12, 1/1, 20/27, 15/16, 17/18, 1/1, 7/9, 1/1, 23/24, 23/24, 16/27, 1/1, 13/16, 1/1, 22/27, 31/32, 35/36, 1/1, 17/27, 35/36, 41/42, 27/32, 5/6, 1/1, 61/72, 1/1, 112/243, etc.

Crossrefs

Cf. A003415, A003959, A129283, A348970, A348972, A348974 (denominators).
Cf. also A345059.

Programs

  • Mathematica
    f1[p_, e_] := e/p; f2[p_, e_] := (p + 1)^e; a[n_] := Numerator[n*(1 + Plus @@ f1 @@@ (f = FactorInteger[n]))/Times @@ f2 @@@ f]; Array[a, 100] (* Amiram Eldar, Nov 06 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348973(n) = { my(u=n+A003415(n)); (u/gcd(A003959(n),u)); };

Formula

a(n) = A129283(n) / A348972(n) = A129283(n) / gcd(A003959(n), A129283(n)).

A348974 Denominator of ratio A129283(n) / A003959(n), where A003959 is multiplicative with a(p^e) = (p+1)^e and A129283(n) is sum of n and its arithmetic derivative.

Original entry on oeis.org

1, 1, 1, 9, 1, 12, 1, 27, 16, 18, 1, 9, 1, 24, 24, 27, 1, 16, 1, 27, 32, 36, 1, 27, 36, 42, 32, 6, 1, 72, 1, 243, 48, 54, 48, 3, 1, 60, 56, 3, 1, 96, 1, 27, 8, 72, 1, 81, 64, 108, 72, 7, 1, 64, 72, 54, 80, 90, 1, 27, 1, 96, 64, 729, 84, 144, 1, 81, 96, 48, 1, 36, 1, 114, 72, 15, 96, 168, 1, 243, 256, 126, 1, 18, 108
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2021

Keywords

Crossrefs

Cf. A003415, A003959, A129283, A348970, A348972, A348973 (numerators).
Cf. also A343227.

Programs

  • Mathematica
    f1[p_, e_] := e/p; f2[p_, e_] := (p + 1)^e; a[n_] := Denominator[n*(1 + Plus @@ f1 @@@ (f = FactorInteger[n]))/Times @@ f2 @@@ f]; Array[a, 100] (* Amiram Eldar, Nov 06 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348974(n) = { my(s=A003959(n)); (s/gcd(s,(n+A003415(n)))); };

Formula

a(n) = A003959(n) / A348972(n) = A003959(n) / gcd(A003959(n), A129283(n)).

A348997 a(n) = A348733(A276086(n)), where A348733(n) = gcd(A003959(n), A034448(n)), and A276086 gives the prime product form of primorial base expansion of n.

Original entry on oeis.org

1, 3, 4, 12, 2, 6, 6, 18, 24, 72, 12, 36, 2, 6, 8, 24, 4, 12, 18, 54, 72, 216, 36, 108, 2, 6, 8, 24, 4, 12, 8, 24, 32, 96, 16, 48, 48, 144, 192, 576, 96, 288, 16, 48, 64, 192, 32, 96, 144, 432, 576, 1728, 288, 864, 16, 48, 64, 192, 32, 96, 2, 6, 8, 24, 4, 12, 12, 36, 48, 144, 24, 72, 4, 12, 16, 48, 8, 24, 36, 108, 144
Offset: 0

Views

Author

Antti Karttunen, Nov 07 2021

Keywords

Crossrefs

Cf. also A346471 for similar construction. (Compare the scatter plots).

Programs

  • PARI
    A348997(n) = { my(m1=1, m2=1, p=2); while(n, if(n%p, m1 *= ((1+p)^(n%p)); m2 *= (1+(p^(n%p)))); n = n\p; p = nextprime(1+p)); gcd(m1, m2); };

Formula

a(n) = A348733(A276086(n)) = gcd(A348949(n), A348996(n)).

A349139 a(n) = Sum_{d|n} A322582(d) * A348507(n/d), where A322582(n) = n - A003958(n) and A348507(n) = A003959(n) - n.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 8, 1, 2, 0, 18, 0, 2, 2, 41, 0, 22, 0, 22, 2, 2, 0, 98, 1, 2, 12, 26, 0, 40, 0, 172, 2, 2, 2, 148, 0, 2, 2, 130, 0, 48, 0, 34, 28, 2, 0, 426, 1, 34, 2, 38, 0, 158, 2, 162, 2, 2, 0, 278, 0, 2, 32, 645, 2, 64, 0, 46, 2, 56, 0, 706, 0, 2, 36, 50, 2, 72, 0, 590, 91, 2, 0, 350, 2, 2, 2, 226, 0, 348
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2021

Keywords

Comments

Dirichlet convolution of A322582 with A348507.
Question: Is a(n) >= A305809(n) for all n?

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p - 1)^e; s1[1] = 0; s1[n_] := n - Times @@ f1 @@@ FactorInteger[n]; f2[p_, e_] := (p + 1)^e; s2[1] = 0; s2[n_] := Times @@ f2 @@@ FactorInteger[n] - n; a[n_] := DivisorSum[n, s1[#]*s2[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 08 2021 *)
  • PARI
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A322582(n) = (n-A003958(n));
    A348507(n) = (A003959(n)-n);
    A349139(n) = sumdiv(n,d,A322582(d)*A348507(n/d));

Formula

a(n) = Sum_{d|n} A322582(d) * A348507(n/d).

A387419 Numbers k such that the odd part of (1+k) divides (1 + odd part of A003959(k)), where A003959 is multiplicative with a(p^e) = (p+1)^e.

Original entry on oeis.org

1, 3, 4, 7, 15, 31, 40, 63, 127, 255, 511, 639, 1023, 2047, 2175, 2431, 4095, 5247, 8191, 14335, 16383, 32767, 40959, 44031, 57855, 65535, 90111, 131071, 204799, 262143, 376831, 524287, 923647, 1048575, 1632255, 2056191, 2097151, 2621439, 2744319, 4194303, 6815743, 8388607, 8781823, 16777215, 19922943, 24068095
Offset: 1

Views

Author

Antti Karttunen, Sep 01 2025

Keywords

Comments

Like in many sequences of this type, the criterion seems to strongly select for numbers with a long tail of trailing 1-bits. Terms 1, 4 and 40 are probably the only terms that are not in A004767.

Crossrefs

Cf. A000225 (subsequence), A000265, A003959, A004767.
For similar sequences, see A336700, A387410, A387411, A387415, A387418.

Programs

A348732 a(n) = A003959(n) - A034448(n), where A003959 is multiplicative with a(p^e) = (p+1)^e and A034448 (usigma) is multiplicative with a(p^e) = (p^e)+1.

Original entry on oeis.org

0, 0, 0, 4, 0, 0, 0, 18, 6, 0, 0, 16, 0, 0, 0, 64, 0, 18, 0, 24, 0, 0, 0, 72, 10, 0, 36, 32, 0, 0, 0, 210, 0, 0, 0, 94, 0, 0, 0, 108, 0, 0, 0, 48, 36, 0, 0, 256, 14, 30, 0, 56, 0, 108, 0, 144, 0, 0, 0, 96, 0, 0, 48, 664, 0, 0, 0, 72, 0, 0, 0, 342, 0, 0, 40, 80, 0, 0, 0, 384, 174, 0, 0, 128, 0, 0, 0, 216, 0, 108
Offset: 1

Views

Author

Antti Karttunen, Oct 31 2021

Keywords

Crossrefs

Cf. A003959, A005117 (positions of zeros), A034448, A034460, A048146, A348029, A348507.

Programs

  • Mathematica
    f1[p_, e_] := (p + 1)^e; f2[p_, e_] := p^e + 1; a[n_] := Times @@ f1 @@@ (f = FactorInteger[n]) - Times @@ f2 @@@ f; Array[a, 100] (* Amiram Eldar, Oct 31 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A034448(n) = { my(f = factor(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
    A348732(n) = (A003959(n)-A034448(n));

Formula

a(n) = A003959(n) - A034448(n).
a(n) = A348507(n) - A034460(n).
a(n) = A048146(n) + A348029(n).

A348508 a(n) = A003959(n) - 2*n, where A003959 is multiplicative with a(p^e) = (p+1)^e.

Original entry on oeis.org

-1, -1, -2, 1, -4, 0, -6, 11, -2, -2, -10, 12, -12, -4, -6, 49, -16, 12, -18, 14, -10, -8, -22, 60, -14, -10, 10, 16, -28, 12, -30, 179, -18, -14, -22, 72, -36, -16, -22, 82, -40, 12, -42, 20, 6, -20, -46, 228, -34, 8, -30, 22, -52, 84, -38, 104, -34, -26, -58, 96, -60, -28, 2, 601, -46, 12, -66, 26, -42, 4, -70, 288
Offset: 1

Views

Author

Antti Karttunen, Oct 30 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p + 1)^e; a[1] = -1; a[n_] := Times @@ f @@@ FactorInteger[n] - 2*n; Array[a, 100] (* Amiram Eldar, Oct 30 2021 *)
  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348508(n) = (A003959(n) - 2*n);

Formula

a(n) = A003959(n) - 2*n.
a(n) = A348507(n) - n.
a(n) = A348029(n) - A033879(n).
From Antti Karttunen, Dec 05 2021: (Start)
a(n) = A168036(n) + A348970(n).
For all n >= 1, a(A138636(n)) = 12.
(End)
a(p) = 1 - p if p prime. - Bernard Schott, Feb 17 2022

A348512 a(n) = A003959(sigma(n)), where A003959 is multiplicative with a(p^e) = (p+1)^e and sigma is the sum of divisors function.

Original entry on oeis.org

1, 4, 9, 8, 12, 36, 27, 24, 14, 48, 36, 72, 24, 108, 108, 32, 48, 56, 54, 96, 243, 144, 108, 216, 32, 96, 162, 216, 72, 432, 243, 128, 324, 192, 324, 112, 60, 216, 216, 288, 96, 972, 108, 288, 168, 432, 324, 288, 80, 128, 432, 192, 192, 648, 432, 648, 486, 288, 216, 864, 96, 972, 378, 128, 288, 1296, 162, 384, 972, 1296
Offset: 1

Views

Author

Antti Karttunen, Oct 29 2021

Keywords

Crossrefs

Programs

  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348512(n) = A003959(sigma(n));

Formula

Multiplicative with a(p^e) = A003959(1 + p + ... + p^e).
a(n) = A003959(A000203(n)).

A003969 Inverse Möbius transform of A003959.

Original entry on oeis.org

1, 4, 5, 13, 7, 20, 9, 40, 21, 28, 13, 65, 15, 36, 35, 121, 19, 84, 21, 91, 45, 52, 25, 200, 43, 60, 85, 117, 31, 140, 33, 364, 65, 76, 63, 273, 39, 84, 75, 280, 43, 180, 45, 169, 147, 100, 49, 605, 73, 172, 95, 195, 55, 340, 91, 360, 105, 124, 61, 455, 63, 132, 189
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := ((p + 1)^(e + 1) - 1)/p; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 23 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, ((f[i,1] + 1)^(f[i,2] + 1) - 1)/f[i,1]); } \\ Amiram Eldar, Oct 23 2022

Formula

Multiplicative with a(p^e) = ((p+1)^(e+1)-1)/p. - David W. Wilson, Sep 01 2001
Sum_{k=1..n} a(k) ~ c * n^2, where c = A072691/A005596 = 2.199369... . - Amiram Eldar, Oct 23 2022

Extensions

More terms from David W. Wilson, Aug 29 2001

A387710 Numbers k for which A003959(k) < 2*k, where A003959 is multiplicative with a(p^e) = (p+1)^e.

Original entry on oeis.org

1, 2, 3, 5, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 75, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 98, 99, 101, 103, 105, 106, 107, 109, 110, 111, 113, 115, 117, 118, 119, 121, 122, 123, 125
Offset: 1

Views

Author

Antti Karttunen, Sep 06 2025

Keywords

Crossrefs

Subsequence of A005100.
Subsequences: A000040, A001358\{4, 6}, A246281.
Positions of 0's in A387715.

Programs

  • PARI
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    is_A387710(n) = (A003959(n)<(2*n));
Previous Showing 31-40 of 91 results. Next