A136834
Number of dimer arrangements on (2n-1) X (2n-1) square with exactly one monomer.
Original entry on oeis.org
1, 18, 2180, 2200776, 20355006224, 1801272981919008, 1560858753560238398528, 13428038397958481723104394368, 1157111379933346772804754279450353920, 1004777133003025735713513459537724394989392384
Offset: 1
- Y. Kong, Packing dimers on (2p+1) X (2q+1) lattices, Phys. Rev. E 73 (2006) 016106
A139772
Number of linear trimer coverings of a 3n X 3n square.
Original entry on oeis.org
2, 64, 37160, 378875648, 67433401509980, 209087783283413477232, 11281654633785546173131745084
Offset: 1
- J. Van Craen, The residual entropy of rectilinear trimers on the square lattice at close packing, J. Chem. Phys. 63 (1975) 2591-2596.
A316535
Number of domino tilings (or dimer coverings) of a 2n X 2n square not counting reflections and rotations.
Original entry on oeis.org
1, 1, 9, 930, 1629189, 32324350352, 6632560613086062, 14025276099356126574624, 305611096281378760240051639364, 68617947901923542714137396006469280000, 158748001407029479280360099562172057138013219144, 3784212561528950376893775523091796640110288722110632534528
Offset: 0
A361413
Number of ways to tile an n X n square using rectangles with distinct dimensions where all the rectangle edge lengths are prime numbers.
Original entry on oeis.org
0, 1, 1, 0, 1, 0, 1, 0, 0, 4128, 1, 10880, 641, 45904, 349496, 892088, 40873, 17695080
Offset: 1
a(2), a(3), a(5), a(7), a(11) = 1 as the only possible tiling is that using an n X n square where n is a prime number. It is likely 11 is the last prime indexed term that equals 1 although this is unknown.
a(10) = 4128. And example tiling is:
.
+---+---+---+---+---+---+---+---+---+---+
| | | |
+ + + +
| | | |
+---+---+---+---+---+---+---+---+---+---+
| | |
+ + +
| | |
+ + +
| | |
+---+---+---+ +
| | |
+ + +
| | |
+ +---+---+---+---+---+---+---+
| | |
+ + +
| | |
+ + +
| | |
+---+---+---+---+---+---+---+---+---+---+
.
Comments