cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 124 results. Next

A331071 a(n) = Sum_{k <= n} r_2(k)^2*d(k+1), where r_2 = A004018, d = A000005.

Original entry on oeis.org

1, 33, 65, 65, 97, 353, 353, 353, 401, 465, 593, 593, 593, 849, 849, 849, 881, 1265, 1297, 1297, 1553, 1553, 1553, 1553, 1553, 2129, 2385, 2385, 2385, 2897, 2897, 2897, 2961, 2961, 3217, 3217, 3249, 3505, 3505, 3505, 3633, 4145, 4145, 4145, 4145, 4401, 4401, 4401, 4401, 4497, 5073, 5073, 5201, 5713, 5713
Offset: 0

Views

Author

N. J. A. Sloane, Jan 10 2020

Keywords

Comments

Partial sums of A330574.

References

  • Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 163.

Crossrefs

Programs

  • Mathematica
    Accumulate @ Table[SquaresR[2, n]^2 * DivisorSigma[0, n+1], {n, 0, 50}] (* Amiram Eldar, Mar 05 2020 *)

Formula

a(n) ~ c * n * log(n)^2, where c is a constant. - Amiram Eldar, Mar 05 2020

A331134 a(n) = Sum_{primes p <= n} r_2(p)/4, where r_2(n) = A004018(n).

Original entry on oeis.org

0, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 9, 9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 15, 15, 15, 15, 15, 15, 15, 15, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 21
Offset: 1

Views

Author

N. J. A. Sloane, Jan 11 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[If[PrimeQ[n], SquaresR[2, n], 0], {n, 1, 100}]/4] (* Amiram Eldar, Apr 23 2024 *)

A124118 Decimal expansion of Sum_{i>=0} A004018(i)/2^i.

Original entry on oeis.org

4, 5, 3, 2, 3, 7, 2, 0, 1, 4, 2, 5, 8, 9, 7, 4, 1, 0, 0, 8, 2, 7, 9, 5, 7, 1, 7, 8, 6, 6, 0, 4, 7, 1, 1, 9, 3, 5, 5, 7, 2, 2, 9, 3, 2, 6, 0, 8, 7, 8, 8, 7, 4, 1, 0, 0, 6, 7, 7, 3, 4, 8, 9, 4, 5, 6, 8, 5, 7, 7, 4, 7, 0, 0, 8, 3, 4, 2, 8, 5, 5, 1, 9, 5, 9, 0, 9
Offset: 1

Views

Author

R. J. Mathar, Nov 25 2006

Keywords

Examples

			4.532372014258974100827957178...
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, 6 ed., 2008, section 17.10, p. 340.

Crossrefs

Cf. A004018.

Programs

  • Mathematica
    Clear[s]; s[n_] := s[n] = RealDigits[ Sum[ SquaresR[2, k]/2^k, {k, 0, n}], 10, 29] // First; s[n=100]; While[s[n] != s[n-100], n = n+100]; s[n] (* Jean-François Alcover, Feb 13 2013 *)
    RealDigits[1 + 4*Sum[(-1)^n/(2^(2*n + 1) - 1), {n, 0, 200}], 10, 100][[1]] (* Amiram Eldar, Jun 22 2020 *)

Formula

Sum_{i>=0} A004018(i)/2^i.
Bailey et al. point out the approximation Pi*(1+2*exp(-Pi^2/log(2))^2)/log(2), correct up to 23 decimal places. - Jean-François Alcover, Jun 27 2015
Equals 1 + 4 * Sum_{k>=0} (-1)^k/(2^(2*k+1) - 1). - Amiram Eldar, Jun 22 2020

A326311 Least numbers k such that A004018(k) is nondecreasing.

Original entry on oeis.org

0, 1, 2, 4, 5, 10, 13, 17, 20, 25, 50, 65, 85, 125, 130, 145, 170, 185, 205, 221, 250, 260, 265, 290, 305, 325, 425, 650, 725, 845, 850, 925, 1025, 1105, 1625, 1885, 2125, 2210, 2405, 2465, 2665, 3145, 3250, 3445, 3485, 3625, 3770, 3965, 4225, 5525
Offset: 1

Views

Author

Hugo Pfoertner, Sep 11 2019

Keywords

Comments

Least squared radius of a circle around a grid point of the square lattice such that the number of grid points on this circle is not smaller than the number of grid points on any circle around a grid point of the square lattice with smaller radius. a(1) = 0 by convention.

Crossrefs

Programs

  • Julia
    using Nemo
    function A326311List(len)
        R, x = PolynomialRing(ZZ, "x")
        e = theta_qexp(2, len, x)
        L = [coeff(e, j) for j in 0:len - 1]
        m = ZZ(0)
        [n - 1 for (n, l) in enumerate(L) if l == (m = max(m, l))]
    end
    A326311List(1000) |> println # Peter Luschny, Sep 12 2019
  • PARI
    r2=0;for(k=0,6000,my(a004018 = if( k<1, k==0, 4 * sumdiv( k, d, (d%4==1) - (d%4==3))));if(a004018>=r2,r2=a004018;print1(k,", ")))
    

A330574 a(n) = r_2(n)^2*d(n+1), where r_2 = A004018, d = A000005.

Original entry on oeis.org

1, 32, 32, 0, 32, 256, 0, 0, 48, 64, 128, 0, 0, 256, 0, 0, 32, 384, 32, 0, 256, 0, 0, 0, 0, 576, 256, 0, 0, 512, 0, 0, 64, 0, 256, 0, 32, 256, 0, 0, 128, 512, 0, 0, 0, 256, 0, 0, 0, 96, 576, 0, 128, 512, 0, 0, 0, 0, 128, 0, 0, 256, 0, 0, 64, 2048, 0, 0, 256, 0, 0, 0, 32, 256, 384, 0, 0, 0, 0, 0, 320, 64, 128, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Jan 10 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SquaresR[2, n]^2 * DivisorSigma[0, n+1], {n, 0, 100}] (* Amiram Eldar, Mar 05 2020 *)

Extensions

Offset corrected by Amiram Eldar, Mar 05 2020

A331135 a(n) = Sum_{primes p <= n} r_2(p-1)/4, where r_2(n) = A004018(n).

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 12, 12, 12, 12, 12, 12, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 17, 17, 17, 17, 17, 17, 17, 17
Offset: 1

Views

Author

N. J. A. Sloane, Jan 11 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[If[PrimeQ[n], SquaresR[2, n-1], 0], {n, 1, 100}]/4] (* Amiram Eldar, Apr 23 2024 *)

A141666 A symmetrical triangle of coefficients based on A004018 (or number of ways of writing n as a sum of 2 squares): t(n,m) = r2(n-m+1)*r2(m+1).

Original entry on oeis.org

1, 4, 4, 4, 16, 4, 0, 16, 16, 0, 4, 0, 16, 0, 4, 8, 16, 0, 0, 16, 8, 0, 32, 16, 0, 16, 32, 0, 0, 0, 32, 0, 0, 32, 0, 0, 4, 0, 0, 0, 16, 0, 0, 0, 4, 4, 16, 0, 0, 32, 32, 0, 0, 16, 4, 8, 16, 16, 0, 0, 64, 0, 0, 16, 16, 8
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 05 2008

Keywords

Comments

Row sums are {1, 8, 24, 32, 24, 48, 96, 64, 24, 104, 144}.

Examples

			Triangle begins
  {1},
  {4,  4},
  {4, 16,  4},
  {0, 16, 16,  0},
  {4,  0, 16,  0,  4},
  {8, 16,  0,  0, 16,  8},
  {0, 32, 16,  0, 16, 32,  0},
  {0,  0, 32,  0,  0, 32,  0,  0},
  {4,  0,  0,  0, 16,  0,  0,  0,  4},
  {4, 16,  0,  0, 32, 32,  0,  0, 16,  4},
  {8, 16, 16,  0,  0, 64,  0,  0, 16, 16,  8}
		

References

  • G. E. Andrews, Number Theory, 1971, Dover Publications New York, p. 44, p. 201-207.

Crossrefs

Cf. A004018.

Programs

  • Mathematica
    Clear[a]; a = CoefficientList[Series[1 + 4*Sum[(-1)^(1 + n)/(-1 + x^(1 - 2*n)), {n, 100}], {x, 0, 100}], x]; Table[Table[a[[n - m + 1]]*a[[m + 1]], {m, 0, n}], {n, 0, 10}]//Flatten

Formula

t(n,m) = r2(n-m+1)*r2(m+1).

A331136 a(n) = Sum_{primes p < n} r_2(n-p)/4, where r_2(n) = A004018(n).

Original entry on oeis.org

0, 0, 1, 2, 1, 2, 4, 3, 2, 3, 3, 6, 4, 2, 7, 5, 3, 6, 5, 7, 7, 7, 7, 7, 5, 3, 10, 10, 6, 8, 9, 9, 9, 7, 4, 13, 9, 6, 15, 7, 7, 14, 11, 10, 11, 9, 12, 16, 9, 7, 12, 13, 11, 15, 14, 13, 17, 12, 7, 16, 11, 8, 23, 12, 9, 17, 14, 16, 18, 15, 15, 21, 12, 10, 17, 19, 16, 20, 16, 11, 22, 15, 14, 27, 14, 11, 29, 20, 12, 18
Offset: 1

Views

Author

N. J. A. Sloane, Jan 11 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[SquaresR[2, n - p]/4, {p, Select[Range[n - 1], PrimeQ]}]; Array[a, 100] (* Amiram Eldar, Apr 23 2024 *)

A333168 a(n) = Sum_{k=0..n} r_2(k^2 + 1), where r_2(k) is the number of ways of writing k as a sum of 2 squares (A004018).

Original entry on oeis.org

4, 8, 16, 24, 32, 40, 48, 60, 76, 84, 92, 100, 116, 132, 140, 148, 156, 172, 196, 204, 212, 228, 244, 260, 268, 276, 284, 300, 316, 324, 340, 356, 380, 396, 412, 420, 428, 444, 468, 476, 484, 496, 512, 536, 552, 560, 576, 608, 624, 632, 648, 656, 672, 688, 696
Offset: 0

Views

Author

Amiram Eldar, Mar 09 2020

Keywords

Examples

			a(0) = r_2(0^2 + 1) = r_2(1) = A004018(1) = 4.
a(1) = r_2(0^2 + 1) + r_2(1^1 + 1) = r_2(1) + r_2(2) = A004018(1) + A004018(2) = 4 + 4 = 8.
		

References

  • Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 166.

Crossrefs

Partial sums of A333167.

Programs

  • Mathematica
    Accumulate @ Table[SquaresR[2, k^2 + 1], {k, 0, 100}]

Formula

a(n) ~ (8/Pi) * n * log(n).

A046106 G.f.: g.f. for A001411 / g.f. for A004018.

Original entry on oeis.org

1, 0, 8, 4, 48, 68, 284, 684, 1816, 5608, 12684, 42068, 92916, 304100, 688988, 2170020, 5088784, 15436172, 37281880, 109786204, 271062388, 781016892, 1958863988, 5555714820, 14090644980, 39503105472, 101000072900, 280693435596
Offset: 0

Views

Author

N. J. A. Sloane, based on a suggestion of Maurice Craig (Maurice.D.Craig(AT)BHPBilliton.com), May 11 2003

Keywords

Examples

			1 + 4*q + 12*q^2 + 36*q^3 + 100*q^4 + 284*q^5 + 780*q^6 + 2172*q^7 + 5916*q^8 + 16268*q^9 + ... / 1 + 4*q + 4*q^2 + 4*q^4 + 8*q^5 + 4*q^8 + 4*q^9 + ... = 1 + 8*q^2 + 4*q^3 + 48*q^4 + 68*q^5 + 284*q^6 + 684*q^7 + 1816*q^8 + 5608*q^9 + ...
		

Crossrefs

Previous Showing 11-20 of 124 results. Next