cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A219835 Number of terms of 2^j + 3^k <= 10^n.

Original entry on oeis.org

7, 29, 64, 118, 181, 254, 354, 453, 565, 708, 878, 1033, 1224, 1403, 1594, 1828, 2046, 2274, 2553, 2808, 3139, 3467, 3765, 4073, 4443, 4779, 5124, 5537, 5911, 6294, 6690, 7266, 7693, 8129, 8650, 9114, 9588, 10153, 10654, 11167, 11776, 12449, 13005, 13662, 14243
Offset: 1

Views

Author

Zak Seidov, Nov 29 2012

Keywords

Comments

As n-> infinity, a(n) -> log_2(n)*log_3(n).

Crossrefs

Cf. A004050 (numbers of the form 2^j + 3^k).

Programs

  • Mathematica
    Join[{7, 29}, Table[m = 10^x; -4 + Floor [ Log[3, m ]] + Sum[Floor @ Log[2, m - 3^i], {i, 0, Log[3, m]}], {x, 3, 100}]]
  • Python
    def a(n):
        s, pow3, lim = set(), 1, 10**n
        while pow3 < lim:
            for j in range((lim-pow3).bit_length()):
                s.add(2**j + pow3)
            pow3 *= 3
        return len(s)
    print([a(n) for n in range(1, 46)]) # Michael S. Branicky, Jul 29 2021

A226808 Numbers of the form 2^j + 5^k, for j and k >= 0.

Original entry on oeis.org

2, 3, 5, 6, 7, 9, 13, 17, 21, 26, 27, 29, 33, 37, 41, 57, 65, 69, 89, 126, 127, 129, 133, 141, 153, 157, 189, 253, 257, 261, 281, 381, 513, 517, 537, 626, 627, 629, 633, 637, 641, 657, 689, 753, 881, 1025, 1029, 1049, 1137, 1149, 1649, 2049, 2053, 2073, 2173
Offset: 1

Views

Author

T. D. Noe, Jun 19 2013

Keywords

Comments

Conjecture: Each integer n > 4 can be written as a_1 + ... + a_k, where a_1,...,a_k are numbers of the form 2^a + 5^b (a,b>=0) (i.e., terms of the current sequence) with no one dividing another. This has been verified for n = 5..1200. - Zhi-Wei Sun, Apr 14 2023

Crossrefs

Cf. A004050 (2^j + 3^k), A226806-A226832 (cases to 8^j + 9^k).

Programs

  • Mathematica
    a = 2; b = 5; mx = 3000; Union[Flatten[Table[a^n + b^m, {m, 0, Log[b, mx]}, {n, 0, Log[a, mx - b^m]}]]]

A226812 Numbers of the form 3^j + 6^k, for j and k >= 0.

Original entry on oeis.org

2, 4, 7, 9, 10, 15, 28, 33, 37, 39, 45, 63, 82, 87, 117, 217, 219, 225, 243, 244, 249, 279, 297, 459, 730, 735, 765, 945, 1297, 1299, 1305, 1323, 1377, 1539, 2025, 2188, 2193, 2223, 2403, 3483, 6562, 6567, 6597, 6777, 7777, 7779, 7785, 7803, 7857, 8019, 8505
Offset: 1

Views

Author

T. D. Noe, Jun 19 2013

Keywords

Comments

Conjecture: Any positive integer not among 1, 3, 5, 6, 8, 12, 27 can be written as a sum of distinct terms of the current sequence with no summand dividing another. - Zhi-Wei Sun, May 01 2023

Crossrefs

Cf. A004050 (2^j + 3^k), A226806-A226832 (cases to 8^j + 9^k).

Programs

  • Mathematica
    a = 3; b = 6; mx = 9000; Union[Flatten[Table[a^n + b^m, {m, 0, Log[b, mx]}, {n, 0, Log[a, mx - b^m]}]]]

A226814 Numbers of the form 5^j + 6^k, for j and k >= 0.

Original entry on oeis.org

2, 6, 7, 11, 26, 31, 37, 41, 61, 126, 131, 161, 217, 221, 241, 341, 626, 631, 661, 841, 1297, 1301, 1321, 1421, 1921, 3126, 3131, 3161, 3341, 4421, 7777, 7781, 7801, 7901, 8401, 10901, 15626, 15631, 15661, 15841, 16921, 23401, 46657, 46661, 46681, 46781, 47281
Offset: 1

Views

Author

T. D. Noe, Jun 19 2013

Keywords

Crossrefs

Cf. A004050 (2^j + 3^k), A226806-A226832 (cases to 8^j + 9^k).

Programs

  • Mathematica
    a = 5; b = 6; mx = 50000; Union[Flatten[Table[a^n + b^m, {m, 0, Log[b, mx]}, {n, 0, Log[a, mx - b^m]}]]]

A226818 Numbers of the form 5^j + 7^k, for j and k >= 0.

Original entry on oeis.org

2, 6, 8, 12, 26, 32, 50, 54, 74, 126, 132, 174, 344, 348, 368, 468, 626, 632, 674, 968, 2402, 2406, 2426, 2526, 3026, 3126, 3132, 3174, 3468, 5526, 15626, 15632, 15674, 15968, 16808, 16812, 16832, 16932, 17432, 18026, 19932, 32432, 78126, 78132, 78174, 78468
Offset: 1

Views

Author

T. D. Noe, Jun 19 2013

Keywords

Crossrefs

Cf. A004050 (2^j + 3^k), A226806-A226832 (cases to 8^j + 9^k).
Cf. A226792 ((5^j + 7^k)/2).

Programs

  • Mathematica
    a = 5; b = 7; mx = 80000; Union[Flatten[Table[a^n + b^m, {m, 0, Log[b, mx]}, {n, 0, Log[a, mx - b^m]}]]]

A226819 Numbers of the form 6^j + 7^k, for j and k >= 0.

Original entry on oeis.org

2, 7, 8, 13, 37, 43, 50, 55, 85, 217, 223, 265, 344, 349, 379, 559, 1297, 1303, 1345, 1639, 2402, 2407, 2437, 2617, 3697, 7777, 7783, 7825, 8119, 10177, 16808, 16813, 16843, 17023, 18103, 24583, 46657, 46663, 46705, 46999, 49057, 63463, 117650, 117655, 117685
Offset: 1

Views

Author

T. D. Noe, Jun 19 2013

Keywords

Crossrefs

Cf. A004050 (2^j + 3^k), A226806-A226832 (cases to 8^j + 9^k).

Programs

  • Mathematica
    a = 6; b = 7; mx = 120000; Union[Flatten[Table[a^n + b^m, {m, 0, Log[b, mx]}, {n, 0, Log[a, mx - b^m]}]]]

A226825 Numbers of the form 7^j + 8^k, for j and k >= 0.

Original entry on oeis.org

2, 8, 9, 15, 50, 57, 65, 71, 113, 344, 351, 407, 513, 519, 561, 855, 2402, 2409, 2465, 2913, 4097, 4103, 4145, 4439, 6497, 16808, 16815, 16871, 17319, 20903, 32769, 32775, 32817, 33111, 35169, 49575, 117650, 117657, 117713, 118161, 121745, 150417, 262145
Offset: 1

Views

Author

T. D. Noe, Jun 19 2013

Keywords

Crossrefs

Cf. A004050 (2^j + 3^k), A226806-A226832 (cases to 8^j + 9^k).

Programs

  • Mathematica
    a = 7; b = 8; mx = 300000; Union[Flatten[Table[a^n + b^m, {m, 0, Log[b, mx]}, {n, 0, Log[a, mx - b^m]}]]]

A226827 Numbers of the form 3^j + 9^k, for j and k >= 0.

Original entry on oeis.org

2, 4, 10, 12, 18, 28, 36, 82, 84, 90, 108, 162, 244, 252, 324, 730, 732, 738, 756, 810, 972, 1458, 2188, 2196, 2268, 2916, 6562, 6564, 6570, 6588, 6642, 6804, 7290, 8748, 13122, 19684, 19692, 19764, 20412, 26244, 59050, 59052, 59058, 59076, 59130, 59292, 59778
Offset: 1

Views

Author

T. D. Noe, Jun 19 2013

Keywords

Comments

If every number 3^j + 9^k is considered, then there are duplicates of 10, 82, 90, 730, 738, 810, 6562, 6570, 6642, 7290, 59050, 59058, 59130, 59778, 65610,....

Crossrefs

Cf. A004050 (2^j + 3^k), A226806-A226832 (cases to 8^j + 9^k).
Cf. A226793 ((3^j + 9^k)/2).

Programs

  • Mathematica
    a = 3; b = 9; mx = 60000; Union[Flatten[Table[a^n + b^m, {m, 0, Log[b, mx]}, {n, 0, Log[a, mx - b^m]}]]]

A226829 Numbers of the form 5^j + 9^k, for j and k >= 0.

Original entry on oeis.org

2, 6, 10, 14, 26, 34, 82, 86, 106, 126, 134, 206, 626, 634, 706, 730, 734, 754, 854, 1354, 3126, 3134, 3206, 3854, 6562, 6566, 6586, 6686, 7186, 9686, 15626, 15634, 15706, 16354, 22186, 59050, 59054, 59074, 59174, 59674, 62174, 74674, 78126, 78134, 78206
Offset: 1

Views

Author

T. D. Noe, Jun 19 2013

Keywords

Crossrefs

Cf. A004050 (2^j + 3^k), A226806-A226832 (cases to 8^j + 9^k).
Cf. A226794 ((5^j + 9^k)/2).

Programs

  • Mathematica
    a = 5; b = 9; mx = 80000; Union[Flatten[Table[a^n + b^m, {m, 0, Log[b, mx]}, {n, 0, Log[a, mx - b^m]}]]]

A216442 Numbers of the form 2^i + 3^j + 5^k, where i, j, k >= 0.

Original entry on oeis.org

3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 22, 24, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 38, 40, 42, 44, 46, 48, 50, 53, 54, 56, 58, 60, 64, 66, 68, 70, 72, 74, 78, 83, 84, 86, 87, 88, 90, 92, 94, 96, 98, 102, 107, 108, 110, 114, 116, 118, 122, 127
Offset: 1

Views

Author

Robert G. Wilson v, Sep 20 2012

Keywords

Comments

Conjecture: Unlike A004050, which has a limited set of integers expressible in more than one way, this set has no such limit.
Number of terms less than or equal to 10^k, k > 0: 8, 56, 238, 615, 1304, 2169, 3606, 5280, 7196, 10414, ....

Crossrefs

Cf. A004050.

Programs

  • Mathematica
    mx = 140; Union@ Flatten@ Table[2^i + 3^j + 5^k, {i, 0, Log[2, mx]}, {j, 0, Log[3, mx - 2^i]}, {k, 0, Log[5, mx - 2^i - 3^j]}]

Formula

There are O(log^3 x) terms of the sequence up to x. - Charles R Greathouse IV, Oct 28 2022
Previous Showing 11-20 of 34 results. Next