cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 44 results. Next

A096682 Least k such that decimal representation of k*n contains only digits 0 and 3.

Original entry on oeis.org

3, 15, 1, 75, 6, 5, 429, 375, 37, 3, 3, 25, 231, 2145, 2, 1875, 1959, 185, 1737, 15, 143, 15, 14361, 125, 12, 1155, 12345679, 10725, 113907, 1, 10743, 9375, 1, 9795, 858, 925, 9, 8685, 77, 75, 813, 715, 76821, 75, 74, 71805, 639, 625, 67347, 6, 653, 5775, 5661
Offset: 1

Views

Author

Ray Chandler, Jul 12 2004

Keywords

Crossrefs

Formula

a(n) = A078242(n)/n.

A096686 Least k such that decimal representation of k*n contains only digits 0 and 7.

Original entry on oeis.org

7, 35, 259, 175, 14, 1295, 1, 875, 86419753, 7, 7, 6475, 539, 5, 518, 4375, 4571, 432098765, 4053, 35, 37, 35, 33509, 32375, 28, 2695, 285473251, 25, 265783, 259, 25067, 21875, 23569, 22855, 2, 2160493825, 21, 20265, 1813, 175, 1897, 185, 179249
Offset: 1

Views

Author

Ray Chandler, Jul 12 2004

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n)  local q, q2, q5, n1, R, Agenda,d, newA, t, t1, t2;
    q2:= padic:-ordp(n,2);
    q5:= padic:-ordp(n,5);
    q:= max(q2,q5);
    n1:= n/2^q2/5^q5;
    R[7]:= 7: Agenda:= {7}:
    if 7 mod n1 = 0 then return 10^q*7/n fi;
    for d from 2 do
        newA:= NULL;
        for t in Agenda do
          t1:= 10*t mod n1;
          if not assigned(R[t1]) then
            R[t1]:= 10*R[t];
            newA:= newA, t1;
          fi;
          t2:= (10*t+7) mod n1;
          if t2 = 0 then
            return 10^q*(10*R[t]+7)/n;
            break
          elif not assigned(R[t2]) then
            R[t2]:= 10*R[t]+7;
            newA:= newA,t2;
          fi;
        od;
        Agenda:= [newA];
    od:
    end proc:
    map(f, [$1..50]); # Robert Israel, Mar 06 2017
  • Mathematica
    f07[n_]:=Module[{k=1},While[!SubsetQ[{0,7},IntegerDigits[n*k]],k++];k]; Array[f07,8] (* The program generates the first 8 terms of the sequence. To generate more, increase the Array constant but because some of the terms are quite large the program may take a long time to run. *) (* Harvey P. Dale, Sep 25 2024 *)

Formula

a(n) = A078246(n)/n.

A096687 Least k such that decimal representation of k*n contains only digits 0 and 8.

Original entry on oeis.org

8, 4, 296, 2, 16, 148, 1144, 1, 98765432, 8, 8, 74, 616, 572, 592, 5, 5224, 49382716, 4632, 4, 3848, 4, 38296, 37, 32, 308, 326255144, 286, 303752, 296, 28648, 25, 26936, 2612, 2288, 24691358, 24, 2316, 2072, 2, 2168, 1924, 204856, 2, 197530864, 19148
Offset: 1

Views

Author

Ray Chandler, Jul 12 2004

Keywords

Crossrefs

Programs

  • Python
    def A096687(n):
        if n > 0:
            for i in range(1, 2**n):
                q, r = divmod(8*int(bin(i)[2:]), n)
                if not r:
                    return q
        return 1 # Chai Wah Wu, Jan 02 2015

Formula

a(n) = A078247(n)/n.

A216479 a(n) is the least multiple of n which uses only the digit 1, or a(n) = -1 if no such multiple exists.

Original entry on oeis.org

1, -1, 111, -1, -1, -1, 111111, -1, 111111111, -1, 11, -1, 111111, -1, -1, -1, 1111111111111111, -1, 111111111111111111, -1, 111111, -1, 1111111111111111111111, -1, -1, -1, 111111111111111111111111111, -1, 1111111111111111111111111111, -1, 111111111111111, -1, 111111, -1, -1, -1, 111, -1, 111111, -1, 11111, -1
Offset: 1

Views

Author

V. Raman, Sep 07 2012

Keywords

Comments

a(n) = -1 if and only if n is a multiple of 2 or 5. See comment in A216485. - Chai Wah Wu, Jun 21 2015

Crossrefs

Cf. A084681 (number of 1's), A190301 (multiplier).

Programs

  • Mathematica
    Array[Which[GCD[#, 10] != 1, -1, Mod[#, 3] == 0, Block[{k = 1}, While[Mod[k, #] != 0, k = 10 k + 1]; k], True, (10^MultiplicativeOrder[10, #] - 1)/9] &, 42] (* Michael De Vlieger, Dec 11 2020 *)
  • Python
    def A216479(n):
        if n % 2 == 0 or n % 5 == 0:
            return -1
        rem = 1
        while rem % n != 0:
            rem = rem*10 + 1
        return rem
    # Azanul Haque, Nov 28 2020

A223474 Least positive multiple of n that when written in base 10 has digits in nonincreasing order.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 60, 52, 42, 30, 32, 51, 54, 76, 20, 21, 22, 92, 72, 50, 52, 54, 84, 87, 30, 31, 32, 33, 442, 70, 72, 74, 76, 663, 40, 41, 42, 43, 44, 90, 92, 94, 96, 98, 50, 51, 52, 53, 54, 55, 840, 741, 522, 531, 60, 61, 62, 63, 64, 65, 66, 871, 544, 552, 70, 71, 72, 73, 74, 75, 76, 77, 6552, 553, 80, 81, 82, 83, 84, 85
Offset: 1

Views

Author

Paul Tek, Mar 20 2013

Keywords

Comments

This sequence is well defined (same reasoning as for A079339).

Examples

			a(39) = 663 because it is the least multiple of 39 appearing in A009996.
		

Crossrefs

a(n)/n yields sequence A223475.
Cf. A009996.

Programs

  • Mathematica
    a[n_] := Block[{x=n}, While[0 < Max@Differences@IntegerDigits@x, x += n]; x]; Array[a, 85] (* Giovanni Resta, Mar 26 2013 *)
  • Perl
    sub A223474 {
        my $n = shift;
        my $a = $n;
        while ($a !~ /^9*8*7*6*5*4*3*2*1*0*$/) {
            $a += $n;
        }
        return $a;
    }
    foreach (1..100) {
        print A223474($_), ",";
    }

A244927 Least positive number k such that k*n written in base 10 is either a repunit or of the form 1111....0000.

Original entry on oeis.org

1, 5, 37, 25, 2, 185, 15873, 125, 12345679, 1, 1, 925, 8547, 79365, 74, 625, 65359477124183, 61728395, 5847953216374269, 5, 5291, 5, 48309178743961352657, 4625, 4, 42735, 4115226337448559670781893, 396825, 38314176245210727969348659, 37, 3584229390681, 3125, 3367, 326797385620915
Offset: 1

Views

Author

Chai Wah Wu, Jul 08 2014

Keywords

Examples

			For n = 7, 15873*7 = 111111 and this is the least positive multiple of 7 that is either a repunit or of the form 1111...000.
		

Crossrefs

Cf. A244859, A079339, A004290. Equal to A079339 for the first 6 terms.

Formula

a(n) = A244859(n)/n.
a(3^k) = (10^(3^k)-1)/3^(k+2). a(n) <= (10^n-1)/(9*n). If n > 2 is not a power of 3, then a(n) <= (10^(n-1)-1)/(9*n). - Chai Wah Wu, Mar 04 2025

A096683 Least k such that decimal representation of k*n contains only digits 0 and 4.

Original entry on oeis.org

4, 2, 148, 1, 8, 74, 572, 5, 49382716, 4, 4, 37, 308, 286, 296, 25, 2612, 24691358, 2316, 2, 1924, 2, 19148, 185, 16, 154, 163127572, 143, 151876, 148, 14324, 125, 13468, 1306, 1144, 12345679, 12, 1158, 1036, 1, 1084, 962, 102428, 1, 98765432
Offset: 1

Views

Author

Ray Chandler, Jul 12 2004

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{id = {0, 4}, k = 1}, While[ Union[ Join[id, IntegerDigits[k*n]]] != id, k++]; k]; Array[f, 100] (* or *)
    id = {0, 7}; lst = Union[ FromDigits /@ Flatten[ Table[ Tuples[id, j], {j, 15}], 1]]; If[ lst[[1]] == 0, lst = Rest@ lst]; f[n_] := (Min[ Select[lst, Mod[#, n] == 0 &]]/n) /. Infinity -> 0; Array[f, 100] (* or *)
    id = {0, 7}; lst = Union[ FromDigits /@ Flatten[ Table[ Tuples[id, j], {j, 15}], 1]]; If[ lst[[1]] == 0, lst = Rest@ lst]; f[n_] := (SelectFirst[lst, Mod[#, n] == 0 &, 0]/n); a = Array[f, 100] (* requires Mathematica v10 *) (* Robert G. Wilson v, Sep 26 2016 *)

Formula

a(n) = A078243(n)/n.

A096684 Least k such that decimal representation of k*n contains only digits 0 and 5.

Original entry on oeis.org

5, 25, 185, 125, 1, 925, 715, 625, 61728395, 5, 5, 4625, 385, 3575, 37, 3125, 3265, 308641975, 2895, 25, 2405, 25, 23935, 23125, 2, 1925, 203909465, 17875, 189845, 185, 17905, 15625, 16835, 16325, 143, 1543209875, 15, 14475, 1295, 125, 1355
Offset: 1

Views

Author

Ray Chandler, Jul 12 2004

Keywords

Crossrefs

Formula

a(n) = A078244(n)/n.

A096685 Least k such that decimal representation of k*n contains only digits 0 and 6.

Original entry on oeis.org

6, 3, 2, 15, 12, 1, 858, 75, 74, 6, 6, 5, 462, 429, 4, 375, 3918, 37, 3474, 3, 286, 3, 28722, 25, 24, 231, 24691358, 2145, 227814, 2, 21486, 1875, 2, 1959, 1716, 185, 18, 1737, 154, 15, 1626, 143, 153642, 15, 148, 14361, 1278, 125, 134694, 12, 1306, 1155
Offset: 1

Views

Author

Ray Chandler, Jul 12 2004

Keywords

Comments

k*n may comprise digits of 6 or both 0 and 6. - Harvey P. Dale, Dec 29 2013

Crossrefs

Programs

  • Mathematica
    k06[n_]:=Module[{k=1},While[Max[Drop[DigitCount[k*n],{6,10,4}]]>0,k++]; k]; Array[k06,52] (* Harvey P. Dale, Dec 29 2013 *)

Formula

a(n) = A078245(n)/n.

A216481 a(n) is the least multiple of n which uses only digit 2, or a(n) = -1 if no such multiple exists.

Original entry on oeis.org

2, 2, 222, -1, -1, 222, 222222, -1, 222222222, -1, 22, -1, 222222, 222222, -1, -1, 2222222222222222, 222222222, 222222222222222222, -1, 222222, 22, 2222222222222222222222, -1, -1, 222222, 222222222222222222222222222, -1, 2222222222222222222222222222, -1, 222222222222222, -1, 222222, 2222222222222222, -1, -1, 222, 222222222222222222, 222222, -1, 22222, 222222
Offset: 1

Views

Author

V. Raman, Sep 07 2012

Keywords

Crossrefs

Previous Showing 21-30 of 44 results. Next