cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A277226 Number of inequivalent (modulo C_4 rotations) square n X n grids with squares coming in two colors and four squares have one of the colors.

Original entry on oeis.org

1, 34, 464, 3182, 14769, 53044, 158976, 416140, 980625, 2124310, 4295376, 8199674, 14907809, 25992232, 43700224, 71167704, 112680801, 173990730, 262690000, 388656070, 564571601, 806527964, 1134722304, 1574255332, 2156041329, 2917838014, 3905408976, 5173826770, 6788930625
Offset: 2

Views

Author

Wolfdieter Lang, Oct 06 2016

Keywords

Comments

See the k=4 column of table A054772(n, k), with more explanations there.

Crossrefs

Cf. A054772, A000012 (k=0), A004652 (k=1), A212714 (k=2), A275799 (k=3).

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(x^2*(1+28*x+272*x^2+804*x^3+1150*x^4+804*x^5 +272*x^6+28*x^7+x^8)/((1-x)^9*(1+x)^3))); // G. C. Greubel, Oct 22 2018
  • Mathematica
    CoefficientList[Series[x^2*(1+28*x+272*x^2+804*x^3+1150*x^4+804*x^5 +272*x^6+28*x^7+x^8)/((1-x)^9*(1+x)^3), {x, 0, 50}], x] (* G. C. Greubel, Oct 22 2018 *)
  • PARI
    Vec(x^2*(1+28*x+272*x^2+804*x^3+1150*x^4+804*x^5+272*x^6+28*x^7 +x^8)/((1-x)^9*(1+x)^3) + O(x^40)) \\ Colin Barker, Oct 16 2016
    

Formula

a(n) = A054772(n, 4) = A054772(n, n^2-4), n >= 2.
From Colin Barker, Oct 09 2016: (Start)
G.f.: x^2*(1+28*x+272*x^2+804*x^3+1150*x^4+804*x^5+272*x^6+28*x^7+x^8) / ((1-x)^9*(1+x)^3).
a(n) = (n^8-6*n^6+14*n^4)/96 for n even.
a(n) = (n^8-6*n^6+14*n^4-6*n^2-3)/96 for n odd. (End)
From Stefan Hollos, Oct 16 2016: (Start)
a(n) = (C(n^2,4) + C(n^2/2,2) + n^2/2)/4 for n even,
a(n) = (C(n^2,4) + C((n^2-1)/2,2) + (n^2-1)/2)/4 for n odd. (End)

A318958 A(n, k) is a square array read in the decreasing antidiagonals, for n >= 0 and k >= 0.

Original entry on oeis.org

0, 0, 0, 0, -1, -1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 2, 2, 3, 2, 2, 0, 1, 3, 3, 4, 3, 3, 0, 3, 4, 6, 6, 7, 6, 6, 0, 2, 5, 6, 8, 8, 9, 8, 8, 0, 4, 6, 9, 10, 12, 12, 13, 12, 12, 0, 3, 7, 9, 12, 13, 15, 15, 16, 15, 15, 0, 5, 8, 12, 14, 17, 18, 20, 20, 21, 20, 20
Offset: 0

Views

Author

Paul Curtz, Sep 06 2018

Keywords

Examples

			The array starts:
[n\k][0,   1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, ...]
[0]   0,   0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0, ... = A000004
[1]   0,  -1,  1,  0,  2,  1,  3,  2,  4,  3,  5,  4, ... = A028242(n-2)
[2]  -1,   0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, ... = A023443(n)
[3]   0,   0,  3,  3,  6,  6,  9,  9, 12, 12, 15, 15, ... = 3*A004526(n)
[4]   0,   2,  4,  6,  8, 10, 12, 14, 16, 18, 20, 22, ... = A005843(n)
[5]   2,   3,  7,  8, 12, 13, 17, 18, 22, 23, 27, 28, ... = A047221(n+1)
[6]   3,   6,  9, 12, 15, 18, 21, 24, 27, 30, 33, 36, ... = A008585(n+1)
[7]   6,   8, 13, 15, 20, 22, 27, 29, 34, 36, 41, 43, ... = A047336(n+2)
[8]   8,  12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, ... = A008586(n+2)
Successive columns: A198442(n-2), A198442(n-1), A004652(n), A198442(n+1), A198442(n+2), A079524(n), ... .
First subdiagonal: 0, 0, 3, 6, ... = A242477(n).
First upperdiagonal: 0, 1, 2, 6, 10, ... = A238377(n-1).
Array written as a triangle:
0;
0,  0;
0, -1, -1;
0,  1,  0, 0;
0,  0,  1, 0, 0;
0,  2,  2, 3, 2, 2;
etc.
		

Crossrefs

Programs

  • Maple
    A := proc(n, k) option remember; local h;
    h := n -> `if`(n<3, [0, 0, -1][n+1], iquo(n^2-4*n+3, 4));
    if k = 0 then h(n) elif k = 1 then h(n+1) else A(n, k-2) + n fi end: # Peter Luschny, Sep 08 2018
  • Mathematica
    h[n_] := If[n < 3, {0, 0, -1}[[n + 1]], Quotient[n^2 - 4 n + 3, 4]];
    A[n_, k_] := A[n, k] = If[k == 0, h[n], If[k == 1, h[n+1], A[n, k-2] + n]];
    Table[A[n - k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jul 22 2019, after Peter Luschny *)

Formula

Let h(n) = 0, 0, -1, A198442(1), A198442(2), A198442(3), ... Then A(n, 0) = h(n), A(n, 1) = h(n+1) and A(n, k) = A(n, k-2) + n otherwise.
Previous Showing 21-22 of 22 results.