cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A338718 Define b(1)=1 and for n>1, b(n)=n/b(n-1); then a(n) = floor(b(n)).

Original entry on oeis.org

1, 2, 1, 2, 1, 3, 2, 3, 2, 4, 2, 4, 2, 4, 3, 5, 3, 5, 3, 5, 3, 5, 3, 6, 4, 6, 4, 6, 4, 6, 4, 7, 4, 7, 4, 7, 4, 7, 5, 7, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 9, 5, 9, 5, 9, 6, 9, 6, 9, 6, 9, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 7, 11, 7, 11, 7, 11, 7, 11, 7, 11, 7, 11, 7, 11
Offset: 1

Views

Author

N. J. A. Sloane, Nov 29 2020, following a suggestion from Anchar Koops, Nov 24 2020

Keywords

Examples

			The first few fractions b(n) are 1, 2, 3/2, 8/3, 15/8, 16/5, 35/16, 128/35, 315/128, 256/63, 693/256, 1024/231, 3003/1024, 2048/429, ...
		

Crossrefs

For the numerators and denominators of b(n) see A004731 and A004730.

Programs

  • Mathematica
    a[n_] := Floor[n!!/(n - 1)!!]; Array[a, 90] (* Robert G. Wilson v, Dec 06 2020 *)

A086767 Last coefficient of the last term in the numerator of the simplified expansion of the solutions of FLT for n=2 for FLT n=1,2,3,..

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 7, 1, 1, 1, 9, 1, 5, 1, 11, 1, 3, 1, 13, 1, 7, 1, 15, 1, 1, 1, 17, 1, 9, 1, 19, 1, 5, 1, 21, 1, 11, 1, 23, 1, 3, 1, 25, 1, 13, 1, 27, 1, 7, 1, 29, 1, 15, 1, 31, 1, 1, 1, 33, 1, 17, 1, 35, 1, 9, 1, 37, 1, 19, 1, 39, 1, 5, 1, 41, 1, 21, 1, 43, 1, 11, 1, 45, 1, 23
Offset: 0

Views

Author

Cino Hilliard, Aug 02 2003

Keywords

Comments

Integers a > b form the solution to FLT n = 2 as follows. (2ab)^2 = (a^2-b^2)^2 - (a^2+b^2)^2. The sequence is the coefficient c of the last b term in the numerator for the simplified expansion of the solution for n=2 as verification of FLT for n=1, 2, ...

Examples

			b/a
1
(3*a^4 + b^4)/(4*b*a^3)
(a^4 + b^4)/(2*b^2*a^2)
(5*a^8 + 10*b^4*a^4 + b^8)/(16*b^3*a^5)
(3*a^8 + 10*b^4*a^4 + 3*b^8)/(16*b^4*a^4)
(7*a^12 + 35*b^4*a^8 + 21*b^8*a^4 + b^12)/(64*b^5*a^7)
(a^12 + 7*b^4*a^8 + 7*b^8*a^4 + b^12)/(16*b^6*a^6)
(9*a^16 + 84*b^4*a^12 + 126*b^8*a^8 + 36*b^12*a^4 + b^16)/(256*b^7*a^9)
(5*a^16 + 60*b^4*a^12 + 126*b^8*a^8 + 60*b^12*a^4 + 5*b^16)/(256*b^8*a^8)
........
(K + cb^m)/2^m1b^m2c^m3
Seq = c for integers K,b,m1,m2,m3,n = 1,2,3...
		

Crossrefs

Programs

  • Maple
    sigma := proc(n) local i; add(i,i=convert(n,base,2)) end:
    a := proc(n) if n=0 or type(n,odd) then 1 else if type(iquo(n,2),odd) then n/2 else n/2^(1-sigma(n)+sigma(n-1)) fi fi end: # Peter Luschny, Aug 03 2009
  • PARI
    \ verification of general solution in integers \ a>b,x = 2ab,y=a^2-b^2,z=a^2+b^2 \ or FLT n=2 x^n+y^n <> z^n = (2ab)^n + (a^2-b^2)^n <> \(a^2+b^2)^n for n > 2 flt(n,a1,b1) = for(x=0,n,print(f(x,a1,b1))) f(n,a,b) = simplify(((a^2+b^2)^n - (a^2-b^2)^n)/(2*a*b)^n) coeffb(m) = { for(y=1,m, n=y; if(n%2,x=1, while(n%2==0,n=n/2); x=n; ); print1(x",") ) }

Formula

a(n) = A004731(n+1)/A004730(n). - Flávio V. Fernandes, Feb 13 2025
Previous Showing 11-12 of 12 results.