cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A185676 Riordan array (((1+x)/(1-x-x^2))^m, x*A000108(x)), m=2.

Original entry on oeis.org

1, 4, 1, 10, 5, 1, 22, 16, 6, 1, 45, 45, 23, 7, 1, 88, 121, 76, 31, 8, 1, 167, 325, 237, 116, 40, 9, 1, 310, 895, 728, 403, 166, 50, 10, 1, 566, 2563, 2253, 1358, 630, 227, 61, 11, 1, 1020, 7670, 7104, 4541, 2288, 930, 300, 73, 12, 1, 1819, 23939, 22919, 15249, 8145, 3604, 1316, 386, 86, 13, 1
Offset: 0

Views

Author

Vladimir Kruchinin, Feb 09 2011

Keywords

Examples

			1;
4,1;
10,5,1;
22,16,6,1;
45,45,23,7,1;
88,121,76,31,8,1;
167,325,237,116,40,9,1;
310,895,728,403,166,50,10,1;
		

Crossrefs

Column k=0 gives: A004798(n+1).

Programs

  • Mathematica
    r[n_, k_, m_] := k*Sum[ Sum[ Binomial[j-1, m-1]*Binomial[j, i+m-j], {j, m, i+m}]*Binomial[2*(n-i)-k-1, n-i-1]/(n-i), {i, 0, n-k}]; r[n_, 0, m_] := Sum[ Binomial[i-1, m-1]*Binomial[i, n+m-i], {i, m, n+m}]; Table[r[n, k, 2], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 21 2013 *)

Formula

R(n,k,m) = k*sum(i=0..n-k, sum(j=m..i+m, binomial(j-1,m-1) * binomial(j,i+m-j)) * binomial(2*(n-i)-k-1,n-i-1)/(n-i)), k>0, m=2; R(n,0,m) = sum(i=m..n+m, binomial(i-1,m-1) * binomial(i,n+m-i)).

A210637 Triangle T(n,k), read by rows, given by (2, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 2, 2, 5, 8, 3, 12, 27, 20, 5, 29, 84, 91, 44, 8, 70, 248, 352, 251, 90, 13, 169, 708, 1240, 1164, 618, 176, 21, 408, 1973, 4106, 4771, 3344, 1414, 334, 34, 985, 5400, 13010, 18000, 15645, 8748, 3073, 620, 55
Offset: 0

Views

Author

Philippe Deléham, Mar 26 2012

Keywords

Comments

Row sums are powers of 4 (A000302).

Examples

			Triangle begins :
1
2, 2
5, 8, 3
12, 27, 20, 5
29, 84, 91, 44, 8
70, 248, 352, 251, 90, 13
169, 708, 1240, 1164, 618, 176, 21
408, 1973, 4106, 4771, 3344, 1414, 334, 34
985, 5400, 13010, 18000, 15645, 8748, 3073, 620, 55
2378, 14574, 39880, 63966, 66282, 46014, 21400, 6429, 1132, 89
5741, 38896, 119129, 217232, 261185, 216348, 125028, 49772, 13061, 2040, 144
		

Crossrefs

Cf. A000045, A000129, A000302, A261056 (2nd column).

Formula

G.f.: (1+y*x)/(1-(y+2)*x-(y+1)^2*x^2).
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) + T(n-2,k) + 2*T(n-2,k-1) + T(n-2,k-2), T(0,0) = 1, T(1,0) = T(1,1) = 2 and T(n,k) = 0 if k<0 or if k>n.
Sum_{k, 0<=k<=n} T(n,k)*x^k = (-1)^n*A159612(n+1), (-1)^n*A000034(n), A000007(n), A000129(n+1), A000302(n) for x = -3, -2, -1, 0, 1 respectively.
T(n,0) = A000129(n+1), T(n,n) = A000045(n+2), T(n+1,n) = 2*A004798(n+1).

A379037 G.f. A(x) satisfies A(x) = ( (1 + x) * (1 + x*A(x)^(3/2)) )^2.

Original entry on oeis.org

1, 4, 18, 106, 689, 4782, 34707, 260190, 1999168, 15660176, 124596498, 1004110948, 8179379807, 67239070868, 557098881919, 4647368670950, 39001655222787, 329048378867468, 2789241880512898, 23743798316713368, 202894843070927859, 1739775692700850554
Offset: 0

Views

Author

Seiichi Manyama, Dec 14 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 2*sum(k=0, n, binomial(3*k+2, k)*binomial(3*k+2, n-k)/(3*k+2));

Formula

G.f.: A(x) = B(x)^2 where B(x) is the g.f. of A364336.
a(n) = 2 * Sum_{k=0..n} binomial(3*k+2,k) * binomial(3*k+2,n-k)/(3*k+2).

A130138 Triangle read by rows: T(n,k) is the number of Fibonacci binary words of length n and having k 1011's (n>=0, 0<=k<=floor((n-1)/3)). A Fibonacci binary word is a binary word having no 00 subword.

Original entry on oeis.org

1, 2, 3, 5, 7, 1, 9, 4, 11, 10, 13, 20, 1, 15, 35, 5, 17, 56, 16, 19, 84, 40, 1, 21, 120, 86, 6, 23, 165, 166, 23, 25, 220, 296, 68, 1, 27, 286, 496, 171, 7, 29, 364, 791, 382, 31, 31, 455, 1211, 781, 105, 1, 33, 560, 1792, 1488, 300, 8, 35, 680, 2576, 2678, 756, 40, 37
Offset: 0

Views

Author

Emeric Deutsch, May 13 2007

Keywords

Comments

Row n has 1+floor((n-1)/3) terms. Row sums are the Fibonacci numbers (A000045). T(n,0)=A004280(n+1). Sum(k*T(n,k), k>=0)=A004798(n-3) (n>=4).

Examples

			T(7,2)=1 because we have 1011011.
Triangle starts:
1;
2;
3;
5;
7,1;
9,4;
11,10;
13,20,1;
15,35,5;
		

Crossrefs

Programs

  • Maple
    G:=(1+z)*(1+z^3-t*z^3)/(1-z-z^2+z^3-t*z^3): Gser:=simplify(series(G,z=0,24)): for n from 0 to 21 do P[n]:=sort(coeff(Gser,z,n)) od: 1; for n from 1 to 21 do seq(coeff(P[n],t,j),j=0..floor((n-1)/3)) od; # yields sequence in triangular form

Formula

G.f.=G(t,z)=(1+z)(1+z^3-tz^3)/[1-z-z^2+z^3-tz^3].
Previous Showing 11-14 of 14 results.