cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 52 results. Next

A283418 Numbers n such that n and n+1 are primitive abundant.

Original entry on oeis.org

82004, 158235, 326864, 442035, 516704, 1102724, 1606275, 2151435, 2697435, 2912084, 2921535, 2979675, 3002804, 3241755, 3647475, 4322835, 5801984, 5905844, 6069195, 7251075, 7387604, 7553924, 8272124, 8788724, 9292724, 9909584
Offset: 1

Views

Author

Emmanuel Vantieghem, May 02 2017

Keywords

Comments

Intersection of A091191 and -1 + A091191.

Examples

			82004 is in the sequence because it is abundant (sum divisors = 164640, > 2*82004) and 82005 is also abundant (sum divisors = 165888, > 2*82005).
		

Crossrefs

Programs

  • Mathematica
    fQ[m_] := DivisorSigma[1, m] > 2 m;
    gQ[m_] := fQ[m] && Union[fQ /@ Rest[Most[Divisors[m]]]] == {False};
    V = Select[Range[10^7], gQ]; Intersection[V, V - 1]

A081635 Class 7+ primes.

Original entry on oeis.org

15013, 16333, 22093, 24841, 43321, 49003, 52517, 54721, 62533, 63761, 69061, 69073, 70061, 74597, 75781, 75793, 75913, 82561, 83233, 84673, 87433, 87509, 88793, 91081, 92761, 94321, 98737, 99367, 101641, 105097, 110881, 111973, 114343
Offset: 1

Views

Author

Robert G. Wilson v, Mar 20 2003

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, A18.

Crossrefs

Programs

  • Maple
    For Maple program see Mathar link in A005105.
  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] + 1]]; ClassPlusNbr[n_] := Length[ NestWhileList[f, n, UnsameQ, All]] - 3; Prime[ Select[ Range[10820], ClassPlusNbr[ Prime[ # ]] == 7 &]]

A081638 Class 10+ primes.

Original entry on oeis.org

1065601, 2424973, 5114881, 7222561, 8124481, 8524091, 8647411, 8650321, 9190681, 9287521, 9590417, 10617601, 10929817, 11996161, 12349093, 12508081, 12786181, 12971117, 13570681, 14113027, 14308123, 14312743, 14476807
Offset: 1

Views

Author

Robert G. Wilson v, Mar 20 2003

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, A18.

Crossrefs

Programs

  • Maple
    For Maple program see Mathar link in A005105.
  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] + 1]]; ClassPlusNbr[n_] := Length[ NestWhileList[f, n, UnsameQ, All]] - 3; Prime[ Select[ Range[150000], ClassPlusNbr[ Prime[ # ]] == 10 &]]

A081634 Class 6+ primes.

Original entry on oeis.org

2917, 4933, 5413, 7507, 8167, 8753, 10567, 10627, 11047, 11261, 11677, 12073, 12251, 12421, 12433, 12553, 12721, 14293, 15017, 17041, 18181, 18493, 19267, 19333, 20023, 21193, 21313, 21661, 22397, 24481, 25933, 26261, 26437, 27361
Offset: 1

Views

Author

Robert G. Wilson v, Mar 20 2003

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, A18.

Crossrefs

Programs

  • Maple
    For Maple program see Mathar link in A005105.
  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] + 1]]; ClassPlusNbr[n_] := Length[ NestWhileList[f, n, UnsameQ, All]] - 3; Prime[ Select[ Range[3000], ClassPlusNbr[ Prime[ # ]] == 6 &]]

A081636 Class 8+ primes.

Original entry on oeis.org

49681, 109441, 120103, 151561, 198733, 210193, 246241, 255043, 266401, 280243, 295873, 326659, 326701, 347773, 355171, 360421, 368881, 397633, 397673, 423001, 441877, 447137, 471241, 480541, 489989, 499397, 508037, 511507, 532757, 539401
Offset: 1

Views

Author

Robert G. Wilson v, Mar 20 2003

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, A18.

Crossrefs

Programs

  • Maple
    For Maple program see Mathar link in A005105.
  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] + 1]]; ClassPlusNbr[n_] := Length[ NestWhileList[f, n, UnsameQ, All]] - 3; Prime[ Select[ Range[44535], ClassPlusNbr[ Prime[ # ]] == 8 &]]

A081637 Class 9+ primes.

Original entry on oeis.org

532801, 710341, 720617, 1212487, 1261157, 1372081, 1457293, 1490429, 1532173, 1657801, 1788547, 1789093, 1809601, 1829293, 1887877, 1944181, 1960141, 1997587, 2121853, 2161853, 2474413, 2484049, 2557441, 2578801, 2613607
Offset: 1

Views

Author

Robert G. Wilson v, Mar 20 2003

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, A18.

Crossrefs

Programs

  • Maple
    For Maple program see Mathar link in A005105.
  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] + 1]]; ClassPlusNbr[n_] := Length[ NestWhileList[f, n, UnsameQ, All]] - 3; Prime[ Select[ Range[196000], ClassPlusNbr[ Prime[ # ]] == 9 &]]

A069353 Numbers of form 2^i*3^j - 1 with i, j >= 0.

Original entry on oeis.org

0, 1, 2, 3, 5, 7, 8, 11, 15, 17, 23, 26, 31, 35, 47, 53, 63, 71, 80, 95, 107, 127, 143, 161, 191, 215, 242, 255, 287, 323, 383, 431, 485, 511, 575, 647, 728, 767, 863, 971, 1023, 1151, 1295, 1457, 1535, 1727, 1943, 2047, 2186, 2303, 2591, 2915, 3071, 3455, 3887
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 18 2002

Keywords

Comments

Are there infinitely many primes in this sequence? See A005105.
If m is a term then also 2*m + 1 and 3*m + 2.

Crossrefs

Programs

  • Mathematica
    With[{max = 4000}, Sort[Flatten[Table[2^i*3^j - 1, {i, 0, Log2[max]}, {j, 0, Log[3, max/2^i]}]]]] (* Amiram Eldar, Jul 13 2023 *)
  • Python
    from sympy import integer_log
    def A069353(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(((x+1)//3**i).bit_length() for i in range(integer_log(x+1,3)[0]+1))
        return bisection(f,n-1,n-1) # Chai Wah Wu, Mar 31 2025

Formula

a(n) = A003586(n)-1.

A129469 Least prime of Erdos-Selfridge class n+ in A129470.

Original entry on oeis.org

883, 3181, 15913, 2146141, 17227801, 456185017, 4960846573, 568124640697, 2273325467773, 145351829612377, 9302101084613641, 595332797734595317, 5813792718345189961, 1139502378775815768313, 166245781044286357673761
Offset: 3

Views

Author

M. F. Hasler, Apr 16 2007

Keywords

Comments

The sequence starts at offset 3, since primes of class 1+ and 2+ have all prime factors (of p+1) of class 1+. Definitions imply that a(n) >= -1+2*A005113(n-1)*nextprime(1+A005113(n-1)). We have a(n) = -1+2*A005113(n-1)*p for all n<18, with p prime for n>3. This holds probably for all n.

Examples

			a(3) = 883 = -1+2*13*17 is a prime of class 3+ since 13 is of class 2+, but the largest divisor of 883+1 is 17 which is only of class 2+.
a(4) = 3181 = -1+2*37*43 is a prime of class 4+ since 37 is of class 3+, but the largest divisor of 3181+1 is 43 which is only of class 2+.
		

Crossrefs

Programs

  • PARI
    class(n,s=1)={n=factor(n+s)[,1]; if(n[ #n]<=3,1, for(i=2,#n,n[1]=max(class(n[i],s)+1,n[1]));n[1])}; A129469={vector(#A005113-1,i,t=A005113[i+1]; t=[t,nextprime(t+1)-1,0];until( isprime( t[3] = -1+2*t[1]*t[2] ) & (f=factor( 1+t[3] )[,1]) & class(f[ #f],1)= i+1, print("Warning, crossed a prime of class >= ",i+1,"+, p=", t[2]); ); ); print(i+2," ",t[3]); t[3])}

A084071 Class 12+ primes.

Original entry on oeis.org

68198461, 115084901, 138358573, 156811273, 213397621, 220576331, 234432217, 260050573, 282261961, 290996753, 330864497, 353653063, 371500819, 383616341, 406915273, 426240379, 445800983, 446707201, 449558323, 460339577, 472782553
Offset: 1

Views

Author

Robert G. Wilson v, Mar 20 2003

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, A18.

Crossrefs

Programs

  • Maple
    For Maple program see Mathar link in A005105.
  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] + 1]]; ClassPlusNbr[n_] := Length[ NestWhileList[f, n, UnsameQ, All]] - 3; Prime[ Select[ Range[25000000], ClassPlusNbr[ Prime[ # ]] == 12 &]]

A126433 Class+ number of prime(n) according to the Erdős-Selfridge classification of primes.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1, 1, 2, 2, 2, 1, 4, 2, 2, 2, 2, 2, 3, 1, 2, 3, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 2, 3, 1, 3, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3, 4, 2, 3, 3, 3, 2, 3, 2, 2, 2, 3, 1, 3, 3, 3, 3, 2, 3, 1, 2, 2, 4, 2, 3, 2, 3, 3, 2, 3, 3, 2, 2, 2, 3, 3, 3, 3, 2, 2, 3, 3
Offset: 1

Views

Author

R. J. Mathar, Mar 23 2007

Keywords

Comments

a(n)=1 if A000040(n) is in A005105. a(n)=2 if A000040(n) is in A005106, a(n)=3 if in A005107 etc. The locations of records are implicit in A005113.

Crossrefs

Cf. A101253.

Programs

  • Maple
    A126433 := proc(n)
        option remember;
        local p, pf, e, a;
        if isprime(n) then
            pf := ifactors(n+1)[2];
            a := 1;
            for e from 1 to nops(pf) do
                p := op(1, op(e, pf));
                if p > 3 then
                    a := max(a, procname(p)+1);
                end if;
            end do;
            a ;
        else
            -1;
        end if;
    end proc:
    seq(A126433(ithprime(n)),n=1..100) ;
    A126433 := n -> if n>0 then A126433(-ithprime(n)) else numtheory[factorset](1-n); if % subset{2,3} then 1 else 1+max(seq(A126433(-i),i=%)) fi fi; map(%,[$1..999]); # M. F. Hasler, Apr 02 2007
  • Mathematica
    classPlus[p_] := classPlus[p] = If[f = FactorInteger[p + 1][[All, 1]]; q = Last[f]; q == 2 || q == 3, 1, Max[classPlus /@ f] + 1]; classPlus /@ Prime /@ Range[105] (* Jean-François Alcover, Jun 24 2013 *)
  • PARI
    A126433(n) = { if( n>0, n=-prime(n)); n=factor(1-n)[,1]; if( n[ #n]>3, vecsort( vector( #n, i, A126433(-n[i]) ))[ #n]+1, 1) }; vector(999,i,A126433(i))
Previous Showing 11-20 of 52 results. Next