cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 240 results. Next

A279357 a(n) = A005187(n) XOR A005187(n+1).

Original entry on oeis.org

1, 2, 7, 3, 15, 2, 1, 4, 31, 2, 1, 5, 1, 14, 3, 5, 63, 2, 1, 5, 1, 14, 3, 4, 1, 30, 3, 7, 3, 14, 1, 6, 127, 2, 1, 5, 1, 14, 3, 4, 1, 30, 3, 7, 3, 14, 1, 7, 1, 62, 3, 7, 3, 14, 1, 4, 3, 30, 1, 5, 1, 2, 15, 7, 255, 2, 1, 5, 1, 14, 3, 4, 1, 30, 3, 7, 3, 14, 1, 7, 1, 62, 3, 7, 3, 14, 1, 4, 3, 30, 1, 5, 1, 2, 15, 6, 1, 126, 3, 7, 3, 14, 1, 4, 3, 30
Offset: 0

Views

Author

Antti Karttunen, Mar 15 2017

Keywords

Crossrefs

Programs

Formula

a(n) = A005187(n) XOR A005187(n+1).

A283997 a(n) = n XOR A005187(floor(n/2)), where XOR is bitwise-xor (A003987).

Original entry on oeis.org

0, 1, 3, 2, 7, 6, 2, 3, 15, 14, 2, 3, 6, 7, 5, 4, 31, 30, 2, 3, 6, 7, 5, 4, 14, 15, 13, 12, 5, 4, 4, 5, 63, 62, 2, 3, 6, 7, 5, 4, 14, 15, 13, 12, 5, 4, 4, 5, 30, 31, 29, 28, 5, 4, 4, 5, 13, 12, 12, 13, 4, 5, 7, 6, 127, 126, 2, 3, 6, 7, 5, 4, 14, 15, 13, 12, 5, 4, 4, 5, 30, 31, 29, 28, 5, 4, 4, 5, 13, 12, 12, 13, 4, 5, 7, 6, 62, 63, 61, 60, 5, 4, 4, 5, 13, 12, 12
Offset: 0

Views

Author

Antti Karttunen, Mar 19 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[BitXor[n, 2 # - DigitCount[2 #, 2, 1] &@ Floor[n/2]], {n, 0, 106}] (* Michael De Vlieger, Mar 20 2017 *)
  • PARI
    b(n) = if(n<1, 0, b(n\2) + n%2);
    A(n) = 2*n - b(2*n);
    for(n=0, 110, print1(bitxor(n, A(floor(n/2))),", ")) \\ Indranil Ghosh, Mar 25 2017
    
  • Python
    def A(n): return 2*n - bin(2*n)[2:].count("1")
    print([n^A(n//2) for n in range(111)]) # Indranil Ghosh, Mar 25 2017
  • Scheme
    (define (A283997 n) (A003987bi n (A005187 (floor->exact (/ n 2))))) ;; Where A003987bi implements bitwise-XOR (A003987).
    

Formula

a(n) = n XOR A005187(floor(n/2)), where XOR is bitwise-xor (A003987).
a(n) = A283996(n) - A283998(n).
a(n) = A005187(n) - 2*A283998(n).
a(n) = A006068(n) XOR A283999(floor(n/2)).

A326133 Numbers n for which sigma(n) > A005187(n).

Original entry on oeis.org

6, 12, 18, 20, 24, 28, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 108, 110, 112, 114, 120, 126, 132, 138, 140, 144, 150, 156, 160, 162, 168, 174, 176, 180, 186, 192, 196, 198, 200, 204, 208, 210, 216, 220, 222, 224, 228, 234, 240, 246, 252, 258, 260, 264, 270, 272, 276, 280, 282, 288, 294, 300
Offset: 1

Views

Author

Antti Karttunen, Jun 11 2019

Keywords

Comments

Differs from A023196 for the first time at the 28th term, which here is 110, which is not included in A023196.
Note that as there is at least one odd number (815634435) in A326138, it means that A005231 does not contain all odd terms of this sequence.

Crossrefs

Positions of negative terms in A294898.
Cf. A000396, A005231, A083207, A111592, A326131, A326138 (subsequences).

Programs

  • Mathematica
    Select[Range[300], DivisorSigma[1, #] > 2*# - DigitCount[2*#, 2, 1] &] (* Amiram Eldar, Aug 06 2023 *)
  • PARI
    A005187(n) = { my(s=n); while(n>>=1, s+=n); s; };
    isA326133(n) = (sigma(n)>A005187(n));

A257126 a(n) = A055938(n) - A005187(n).

Original entry on oeis.org

1, 2, 2, 2, 4, 3, 3, 2, 4, 3, 5, 5, 5, 4, 4, 2, 4, 3, 5, 5, 5, 4, 6, 5, 5, 6, 8, 6, 6, 5, 5, 2, 4, 3, 5, 5, 5, 4, 6, 5, 5, 6, 8, 6, 6, 5, 7, 5, 5, 6, 8, 6, 6, 7, 9, 6, 8, 9, 9, 7, 7, 6, 6, 2, 4, 3, 5, 5, 5, 4, 6, 5, 5, 6, 8, 6, 6, 5, 7, 5, 5, 6, 8, 6, 6, 7, 9, 6, 8, 9, 9, 7, 7, 6, 8, 5, 5, 6, 8, 6, 6, 7, 9, 6, 8, 9, 9, 7, 7, 8, 10, 6, 8, 9, 9, 7, 9, 10, 10, 9
Offset: 1

Views

Author

Antti Karttunen, Apr 16 2015

Keywords

Crossrefs

Positions of records: A257130.

Programs

Formula

a(n) = A055938(n) - A005187(n).

A265743 a(n) = number of terms of A005187 needed to sum to n using the greedy algorithm.

Original entry on oeis.org

0, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 2, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 2, 2, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 2, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 2, 2, 3, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 2, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 2, 2, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 2, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 2, 2, 3, 4, 1, 1
Offset: 0

Views

Author

Antti Karttunen, Dec 17 2015

Keywords

Comments

a(0) = 0, because no numbers are needed to form an empty sum, which is zero.

Crossrefs

Formula

Other identities. For all n >= 1:
a(A005187(n)) = 1 and a(A055938(n)) > 1.

A294896 a(n) = gcd(A000203(n), A005187(n)).

Original entry on oeis.org

1, 3, 4, 7, 2, 2, 1, 15, 1, 18, 1, 2, 1, 1, 2, 31, 2, 1, 5, 2, 1, 1, 6, 2, 1, 7, 10, 1, 6, 8, 1, 63, 16, 6, 1, 7, 1, 1, 2, 6, 1, 3, 2, 1, 2, 8, 1, 2, 19, 1, 2, 1, 6, 8, 3, 1, 10, 2, 1, 4, 1, 1, 8, 127, 4, 2, 1, 2, 3, 1, 6, 1, 1, 1, 2, 1, 6, 8, 1, 2, 1, 7, 6, 1, 2, 12, 1, 1, 6, 2, 1, 12, 1, 3, 8, 2, 1, 1, 2, 1, 6, 8, 1, 5, 2
Offset: 1

Views

Author

Antti Karttunen, Nov 25 2017

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A000203(n), A005187(n)).
a(n) = gcd(A000203(n),abs(A294898(n))) = gcd(A005187(n),abs(A294898(n))), where A294898(n) = A005187(n) - A000203(n).
a(n) = A000203(n)/A295655(n) = A005187(n)/A295656(n).

A296208 Xor-Moebius transform of A005187.

Original entry on oeis.org

1, 2, 5, 4, 9, 12, 10, 8, 20, 24, 18, 24, 22, 16, 23, 16, 33, 60, 34, 48, 41, 56, 43, 48, 39, 36, 34, 40, 55, 52, 56, 32, 86, 96, 65, 120, 70, 104, 88, 96, 78, 104, 83, 120, 88, 112, 88, 96, 84, 84, 71, 80, 103, 104, 115, 80, 72, 68, 112, 96, 116, 76, 75, 64, 158, 244, 130, 192, 168, 192, 139, 240, 142, 212, 175, 216
Offset: 1

Views

Author

Antti Karttunen, Dec 25 2017

Keywords

Comments

Unique sequence satisfying SumXOR_{d divides n} a(d) = A005187(n) for all n > 0, where SumXOR is the analog of summation under the binary XOR operation. See A295901 for a list of some of the properties of Xor-Moebius transform. A297111 gives the ordinary Möbius transform of A005187.

Crossrefs

Programs

  • PARI
    A005187(n) = { my(s=n); while(n>>=1, s+=n); s; };
    A296208(n) = { my(v=0); fordiv(n, d, if(issquarefree(n/d), v=bitxor(v, A005187(d)))); (v); } \\ after code in A295901.

A300723 Möbius-transform of A005187(A053645(n)).

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 4, 0, 0, 2, 4, 4, 8, 6, 9, 0, 1, 0, 4, 4, 3, 6, 11, 8, 15, 10, 18, 12, 23, 10, 26, 0, -4, 2, -1, 0, 8, 6, 2, 8, 16, 2, 19, 12, 12, 14, 26, 16, 28, 16, 33, 20, 39, 20, 37, 24, 42, 26, 50, 20, 54, 30, 49, 0, -8, -6, 4, 4, -4, -2, 11, 0, 16, 10, -7, 12, 15, 2, 26, 16, 13, 18, 35, 4, 37, 22, 18, 24, 47, 12
Offset: 1

Views

Author

Antti Karttunen, Mar 12 2018

Keywords

Crossrefs

Programs

  • Mathematica
    With[{s = Array[2 # - DigitCount[2 #, 2, 1] &[# - 2^Floor@ Log2@ #] &, 90]}, Table[DivisorSum[n, MoebiusMu[n/#] s[[#]] &], {n, Length@ s}]] (* Michael De Vlieger, Mar 13 2018 *)
  • PARI
    A005187(n) = { my(s=n); while(n>>=1, s+=n); s; };
    A053644(n) = { my(k=1); while(k<=n, k<<=1); (k>>1); }; \\ From A053644
    A053645(n) = (n-A053644(n));
    A300723(n) = sumdiv(n,d,moebius(n/d)*A005187(A053645(d)));

Formula

a(n) = Sum_{d|n} A008683(n/d)*A005187(A053645(d)).
a(1) = 0; for n > 1, a(n) = A297111(n) - 2*A300724(n).

A317927 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A005187.

Original entry on oeis.org

1, 3, 2, 19, 4, 2, 11, 63, 6, 3, 19, 13, 23, 17, 5, 867, 16, 4, 35, 5, 17, 25, 21, 11, 31, 29, 13, 113, 27, 13, 57, 3069, 13, 9, 23, 25, 71, 41, 14, 69, 79, 33, 41, 169, 9, 25, 89, 615, 259, 53, 17, 197, 51, 25, 29, 389, 20, 31, 113, 59, 117, 67, 10, 22199, 18, 14, 131, 31, 51, 71, 69, 11, 143, 77, 22, 281, 91, 35, 153, 489, 71, 85, 81, 151, 19
Offset: 1

Views

Author

Antti Karttunen, Aug 11 2018

Keywords

Comments

The first negative term is a(330) = -21.

Crossrefs

Cf. A005187, A317928 (denominators).

Programs

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A005187(n) - Sum_{d|n, d>1, d 1.

A317928 Denominators of rational valued sequence whose Dirichlet convolution with itself yields A005187.

Original entry on oeis.org

1, 2, 1, 8, 1, 1, 2, 16, 1, 1, 2, 4, 2, 4, 1, 128, 1, 1, 2, 1, 2, 4, 1, 2, 2, 4, 1, 16, 1, 2, 2, 256, 1, 1, 2, 4, 2, 4, 1, 8, 2, 4, 1, 16, 1, 2, 2, 64, 8, 4, 1, 16, 1, 2, 2, 32, 1, 2, 2, 8, 2, 4, 1, 1024, 1, 1, 2, 2, 2, 4, 1, 1, 2, 4, 1, 16, 4, 2, 2, 32, 2, 4, 1, 16, 1, 2, 2, 32, 1, 2, 4, 8, 2, 4, 1, 64, 2, 16, 1, 16, 1, 2, 2, 32, 2
Offset: 1

Views

Author

Antti Karttunen, Aug 11 2018

Keywords

Crossrefs

Cf. A005187, A317927 (numerators).

Programs

Formula

a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A005187(n) - Sum_{d|n, d>1, d 1.
Previous Showing 41-50 of 240 results. Next