cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A320642 Number of 1's in the base-(-2) expansion of -n.

Original entry on oeis.org

2, 1, 3, 2, 4, 3, 2, 1, 3, 2, 4, 3, 5, 4, 3, 2, 4, 3, 5, 4, 6, 5, 4, 3, 5, 4, 3, 2, 4, 3, 2, 1, 3, 2, 4, 3, 5, 4, 3, 2, 4, 3, 5, 4, 6, 5, 4, 3, 5, 4, 6, 5, 7, 6, 5, 4, 6, 5, 4, 3, 5, 4, 3, 2, 4, 3, 5, 4, 6, 5, 4, 3, 5, 4, 6, 5, 7, 6, 5, 4, 6, 5, 7, 6, 8, 7, 6
Offset: 1

Views

Author

Jianing Song, Oct 18 2018

Keywords

Comments

Number of 1's in A212529(n).
Define f(n) as: f(0) = 0, f(-2*n) = f(n), f(-2*n+1) = f(n) + 1, then a(n) = f(-n), n >= 1. See A027615 for the other half of f.
For k > 1, the earliest occurrence of k is n = A086893(k-1).

Examples

			A212529(11) = 110101 which has four 1's, so a(11) = 4.
A212529(25) = 111011 which has five 1's, so a(25) = 5.
A212529(51) = 11011101 which has six 1's, so a(51) = 6.
		

Crossrefs

Programs

  • Mathematica
    b[n_] := b[n] = b[Quotient[n - 1, -2]] + Mod[n, 2]; b[0] = 0; a[n_] := b[-n]; Array[a, 100] (* Amiram Eldar, Jul 23 2023 *)
  • PARI
    b(n) = if(n==0, 0, b(n\(-2))+n%2)
    a(n) = b(-n)

Formula

a(n) == -n (mod 3).
a(n) = A000120(A005352(n)). - Michel Marcus, Oct 23 2018

A331821 Positive numbers k such that -k and -(k + 1) are both negabinary-Niven numbers (A331728).

Original entry on oeis.org

2, 3, 8, 9, 15, 24, 27, 32, 33, 39, 54, 55, 63, 77, 111, 114, 115, 123, 128, 129, 135, 144, 159, 174, 175, 203, 234, 235, 245, 255, 264, 294, 295, 329, 370, 371, 384, 413, 414, 415, 444, 447, 474, 475, 495, 504, 507, 512, 513, 519, 534, 535, 543, 580, 581, 624
Offset: 1

Views

Author

Amiram Eldar, Jan 27 2020

Keywords

Examples

			8 is a term since both -8 and -(8 + 1) = -9 are negabinary-Niven numbers: A039724(-8) = 1000 and 1 + 0 + 0 + 0 = 1 is a divisor of 8, and A039724(-9) = 1011 and 1 + 0 + 1 + 1 = 3 is a divisor of 9.
		

Crossrefs

Programs

  • Mathematica
    negaBinWt[n_] := negaBinWt[n] = If[n == 0, 0, negaBinWt[Quotient[n - 1, -2]] + Mod[n, 2]]; negaBinNivenQ[n_] := Divisible[n, negaBinWt[-n]]; c = 0; k = 1; s = {}; v = Table[-1, {2}]; While[c < 60, If[negaBinNivenQ[k], v = Join[Rest[v], {k}]; If[AllTrue[Differences[v], # == 1 &], c++; AppendTo[s, k - 1]]]; k++]; s

A331893 Positive numbers k such that both k and -k are a palindromes in negabinary representation.

Original entry on oeis.org

1, 5, 7, 17, 21, 31, 57, 65, 85, 127, 155, 217, 257, 273, 325, 341, 455, 511, 635, 857, 889, 993, 1025, 1105, 1253, 1285, 1365, 1799, 2047, 2159, 2555, 2667, 3417, 3577, 3641, 3937, 4097, 4161, 4369, 4433, 4965, 5125, 5189, 5397, 5461, 6951, 7175, 7967, 8191
Offset: 1

Views

Author

Amiram Eldar, Jan 30 2020

Keywords

Comments

Numbers of the form 2^(2*m-1) - 1 (A083420) and 2^(2*m) + 1 (A052539) are terms.

Examples

			5 is a term since the negabinary representation of 5, 101, and the negabinary representation of -5, 1111, are both palindromic.
		

Crossrefs

Intersection of A331891 and A331892.

Programs

  • Mathematica
    negabin[n_] := negabin[n] = If[n==0, 0, negabin[Quotient[n-1, -2]]*10 + Mod[n, 2]]; nbPalinQ[n_] := And @@ (PalindromeQ @ negabin[#] & /@ {n, -n}); Select[Range[2^13], nbPalinQ]

A331823 Positive numbers k such that -k, -(k + 1), and -(k + 2) are 3 consecutive negative negabinary-Niven numbers (A331728).

Original entry on oeis.org

2, 8, 32, 54, 114, 128, 174, 234, 294, 370, 413, 414, 474, 512, 534, 580, 654, 774, 894, 954, 1000, 1014, 1134, 1430, 1734, 1794, 1840, 1854, 1914, 1974, 2034, 2048, 2093, 2094, 2154, 2214, 2334, 2574, 2680, 2694, 2814, 2870, 3054, 3100, 3520, 3773, 3774, 3834
Offset: 1

Views

Author

Amiram Eldar, Jan 27 2020

Keywords

Crossrefs

Programs

  • Mathematica
    negaBinWt[n_] := negaBinWt[n] = If[n == 0, 0, negaBinWt[Quotient[n - 1, -2]] + Mod[n, 2]]; negaBinNivenQ[n_] := Divisible[n, negaBinWt[-n]]; nConsec = 3; neg = negaBinNivenQ /@ Range[nConsec]; seq = {}; c = 0; k = nConsec+1; While[c < 50, If[And @@ neg, c++; AppendTo[seq, k - nConsec]]; neg = Join[Rest[neg], {negaBinNivenQ[k]}]; k++]; seq
Previous Showing 11-14 of 14 results.