cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A268163 Number of labeled binary-ternary rooted non-planar trees, indexed by number of leaves.

Original entry on oeis.org

0, 1, 1, 4, 25, 220, 2485, 34300, 559405, 10525900, 224449225, 5348843500, 140880765025, 4063875715900, 127418482316125, 4314607214417500, 156920190449147125, 6100643259005795500, 252476539015516440625, 11081983532721088487500, 514215436341672155715625
Offset: 0

Views

Author

Murray R. Bremner, Jan 27 2016

Keywords

Comments

This can also be interpreted as the number of multilinear monomials of degree n in a nonassociative algebra with an (anti)commutative binary operation and a completely (skew-)symmetric ternary operation; the number of variables in the monomial corresponds to the number of leaves in the tree.
This sequence also enumerates a certain class of Feynman diagrams; see the references, links, and crossrefs below.

Examples

			For n = 4 and using the monomial interpretation, the 25 multilinear monomials of degree 4 are as follows, where [-,-] is the binary operation and (-,-,-) is the ternary operation:
[[[a,b],c],d], [[[a,b],d],c], [[[a,c],b],d], [[[a,c],d],b], [[[a,d],b],c], [[[a,d],c],b], [[[b,c],a],d], [[[b,c],d],a], [[[b,d],a],c], [[[b,d],c],a], [[[c,d],a],b], [[[c,d],b],a], [[a,b],[c,d]], [[a,c],[b,d]], [[a,d],[b,c]], [(a,b,c),d], [(a,b,d),c], [(a,c,d),b], [(b,c,d),a], ([a,b],c,d), ([a,c],b,d), ([a,d],b,c), ([b,c],a,d), ([b,d],a,c), ([c,d],a,b).
		

References

  • J. Bedford, On Perturbative Field Theory and Twistor String Theory, Ph.D. Thesis, 2007, Queen Mary, University of London.
  • B. Feng and M. Luo, An introduction to on-shell recursion relations, Review Article, Frontiers of Physics, October 2012, Volume 7, Issue 5, pp. 533-575.
  • K. Kampf, A new look at the nonlinear sigma model, 17th International Conference in Quantum Chromodynamics (QCD 14), Nuclear and Particle Physics Proceedings, Volumes 258-259, January-February 2015, pp. 86-89.
  • M. L. Mangano and S. J. Parke, Multi-parton amplitudes in gauge theories, Physics Reports, Volume 200, Issue 6, February 1991, pp. 301-367.

Crossrefs

Cf. A001147. The number of labeled binary rooted non-planar trees.
Cf. A025035. The number of labeled ternary rooted non-planar trees.
Cf. A268172. The corresponding number of unlabelled trees.
Cf. A005411. Number of non-vanishing Feynman diagrams of order 2n for the electron or the photon propagators in quantum electrodynamics.
Cf. A005412. Number of non-vanishing Feynman diagrams of order 2n for the vacuum polarization (the proper two-point function of the photon) and for the self-energy (the proper two-point function of the electron) in quantum electrodynamics (QED).
Cf. A005413. Number of non-vanishing Feynman diagrams of order 2n+1 for the electron-electron-photon proper vertex function in quantum electrodynamics (QED).
Cf. A005414. Feynman diagrams of order 2n with vertex skeletons.
Other sequences related to Feynman diagrams: A115974, A122023, A167872, A214298, A214299.
Cf. A000311.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i, v) option remember; `if`(n=0,
          `if`(v=0, 1, 0), `if`(i<1 or v<1 or nAlois P. Heinz, Jan 28 2016
    # second Maple program:
    a:= proc(n) option remember; `if`(n<3, [0, 1$2][n+1],
           ((24*n-36)*a(n-1)+(3*n-5)*(3*n-7)*a(n-2))/11)
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 28 2016
  • Mathematica
    a[0]=0; a[1]=1; a[2]=1; a[n_]:=a[n]=(12(2n-3)a[n-1]+(3n-5)(3n-7)a[n-2])/11; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 24 2016, after Alois P. Heinz *)

Formula

a(n) = ((24*n-36)*a(n-1)+(3*n-5)*(3*n-7)*a(n-2))/11 for n>2. - Alois P. Heinz, Jan 28 2016
Because of Koszul duality for operads, the exponential generating function is the compositional inverse of the power series x-x^2/2-x^3/6 (email of Vladimir Dotsenko to Murray R. Bremner, Jan 28 2016).
a(n) ~ sqrt(9-4*sqrt(3)) * ((12+9*sqrt(3))/11)^n * n^(n-1) / (3 * exp(n)). - Vaclav Kotesovec, Feb 24 2016

A274844 The inverse multinomial transform of A001818(n) = ((2*n-1)!!)^2.

Original entry on oeis.org

1, 8, 100, 1664, 34336, 843776, 24046912, 779780096, 28357004800, 1143189536768, 50612287301632, 2441525866790912, 127479926768287744, 7163315850315825152, 431046122080208896000, 27655699473265974050816, 1884658377677216933085184
Offset: 1

Views

Author

Johannes W. Meijer, Jul 27 2016

Keywords

Comments

The inverse multinomial transform [IML] transforms an input sequence b(n) into the output sequence a(n). The IML transform inverses the effect of the multinomial transform [MNL], see A274760, and is related to the logarithmic transform, see A274805 and the first formula.
To preserve the identity MNL[IML[b(n)]] = b(n) for n >= 0 for a sequence b(n) with offset 0 the shifted sequence b(n-1) with offset 1 has to be used as input for the MNL.
In the a(n) formulas, see the examples, the cumulant expansion numbers A127671 appear.
We observe that the inverse multinomial transform leaves the value of a(0) undefined.
The Maple programs can be used to generate the inverse multinomial transform of a sequence. The first program is derived from a formula given by Alois P. Heinz for the logarithmic transform, see the first formula and A001187. The second program uses the e.g.f. for multivariate row polynomials, see A127671 and the examples. The third program uses information about the inverse of the inverse of the multinomial transform, see A274760.
The IML transform of A001818(n) = ((2*n-1)!!)^2 leads quite unexpectedly to A005411(n), a sequence related to certain Feynman diagrams.
Some IML transform pairs, n >= 1: A000110(n) and 1/A000142(n-1); A137341(n) and A205543(n); A001044(n) and A003319(n+1); A005442(n) and A000204(n); A005443(n) and A001350(n); A007559(n) and A000244(n-1); A186685(n+1) and A131040(n-1); A061711(n) and A141151(n); A000246(n) and A000035(n); A001861(n) and A141044(n-1)/A001710(n-1); A002866(n) and A000225(n); A000262(n) and A000027(n).

Examples

			Some a(n) formulas, see A127671:
a(0) = undefined
a(1) = (1/0!) * (1*x(1))
a(2) = (1/1!) * (1*x(2) - x(1)^2)
a(3) = (1/2!) * (1*x(3) - 3*x(2)*x(1) + 2*x(1)^3)
a(4) = (1/3!) * (1*x(4) - 4*x(3)*x(1) - 3*x(2)^2 + 12*x(2)*x(1)^2 - 6*x(1)^4)
a(5) = (1/4!) * (1* x(5) - 5*x(4)*x(1) - 10*x(3)*x(2) + 20*x(3)*x(1)^2 + 30*x(2)^2*x(1) -60*x(2)*x(1)^3 + 24*x(1)^5)
		

References

  • Richard P. Feynman, QED, The strange theory of light and matter, 1985.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.

Crossrefs

Programs

  • Maple
    nmax:=17: b := proc(n): (doublefactorial(2*n-1))^2 end: c:= proc(n) option remember; b(n) - add(k*binomial(n, k)*b(n-k)*c(k), k=1..n-1)/n end: a := proc(n): c(n)/(n-1)! end: seq(a(n), n=1..nmax); # End first IML program.
    nmax:=17: b := proc(n): (doublefactorial(2*n-1))^2 end: t1 := log(1+add(b(n)*x^n/n!, n=1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n*coeff(t2, x, n) end: seq(a(n), n=1..nmax); # End second IML program.
    nmax:=17: b := proc(n): (doublefactorial(2*n-1))^2 end: f := series(exp(add(t(n)*x^n/n, n=1..nmax)), x, nmax+1): d := proc(n): n!*coeff(f, x, n) end: a(1):=b(1): t(1):= b(1): for n from 2 to nmax+1 do t(n) := solve(d(n)-b(n), t(n)): a(n):=t(n): od: seq(a(n), n=1..nmax); # End third IML program.
  • Mathematica
    nMax = 22; b[n_] := ((2*n-1)!!)^2; c[n_] := c[n] = b[n] - Sum[k*Binomial[n, k]*b[n-k]*c[k], {k, 1, n-1}]/n; a[n_] := c[n]/(n-1)!; Table[a[n], {n, 1, nMax}] (* Jean-François Alcover, Feb 27 2017, translated from Maple *)

Formula

a(n) = c(n)/(n-1)! with c(n) = b(n) - Sum_{k=1..n-1}(k*binomial(n, k)*b(n-k)*c(k)), n >= 1 and a(0) = undefined, with b(n) = A001818(n) = ((2*n-1)!!)^2.
a(n) = A000079(n-1) * A005411(n), n >= 1.

A333114 Sum over all closed Deutsch paths of length n of products over all peaks p of x_p/y_p, where x_p and y_p are the coordinates of peak p.

Original entry on oeis.org

1, 0, 1, 1, 5, 11, 44, 134, 529, 1902, 7793, 31068, 133641, 574259, 2594969, 11842726, 56083004, 269450143, 1333170844, 6703500545, 34548749471, 181026885253, 969167994094, 5273977173249, 29257773480987, 164894374634333, 945779302210358, 5507572390808676
Offset: 0

Views

Author

Alois P. Heinz, Mar 07 2020

Keywords

Comments

Deutsch paths (named after their inventor Emeric Deutsch by Helmut Prodinger) are like Dyck paths where down steps can get to all lower levels. Open paths can end at any level, whereas closed paths have to return to the lowest level zero at the end.

Examples

			a(4) = (1/1)*(3/1) + 2/2 + 3/3 = 5.
		

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(x=0, 1, add(
          `if`(t and j<0, x/y, 1)*b(x-1, y+j, is(j>0)), j=[
          `if`(y=0, [][], -1), $1..x-1-y]))
        end:
    a:= n-> b(n, 0, false):
    seq(a(n), n=0..30);
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[x == 0, 1, Sum[If[t && j < 0, x/y, 1]* b[x-1, y+j, j > 0], {j, Join[If[y == 0, {}, {-1}], Range[x-1-y]]}]];
    a[n_] := b[n, 0, False];
    a /@ Range[0, 30] (* Jean-François Alcover, Mar 19 2020, after Alois P. Heinz *)

A224978 The number of completed primitive graphs of n loops, in enumerating Feynman graphs in quantum field theory.

Original entry on oeis.org

1, 1, 2, 5, 14, 49, 227, 1354
Offset: 3

Views

Author

Jonathan Vos Post, Apr 21 2013

Keywords

Comments

Table 2, page 10 of Brown and Schnetz.

Crossrefs

Previous Showing 21-24 of 24 results.