cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A229023 Numerators of the main diagonal of A225825 difference table, a sequence linked to Bernoulli, Genocchi and Clausen numbers.

Original entry on oeis.org

1, -2, 16, -424, 2944, -70240, 70873856, -212648576, 98650550272, -90228445612544, 19078660567134208, -2034677178643867648, 123160010212358914048, -19182197131374977024, 228111332170536254898176, -51166426240975948419354886144
Offset: 0

Views

Author

Keywords

Comments

a(n) is divisible by 2^n and congruent to 1, 2, 4, 5, 7 or 8 mod 9.

Examples

			1, -2/3, 16/15, -424/105, 2944/105, -70240/231, 70873856/15015, ...
		

Crossrefs

Cf. A181131 (denominators), A225825, A110501 (Genocchi numbers), A141056 (Clausen numbers), A212196 (Bernoulli medians), A005439 (Genocchi medians).

Programs

  • Mathematica
    nmax = 30; Clausen[n_] := Times @@ Select[Divisors[n] + 1, PrimeQ]; t = Join[{1}, Table[Numerator[BernoulliB[n, 1/2] - (n + 1)*EulerE[n, 0]]/Clausen[n], {n, 1, nmax}]]; dt = Table[Differences[t, n], {n, 0, nmax}]; Diagonal[dt] // Numerator

A240677 a(n) = 6*Zeta(1-n)*n*(2^n-1) - Zeta(-n)*(n+1)*(2^(n+2)-2), for n = 0 the limit is understood.

Original entry on oeis.org

1, -2, -3, -1, 3, 3, -9, -17, 51, 155, -465, -2073, 6219, 38227, -114681, -929569, 2788707, 28820619, -86461857, -1109652905, 3328958715, 51943281731, -155829845193, -2905151042481, 8715453127443
Offset: 0

Views

Author

Paul Curtz, Apr 10 2014

Keywords

Comments

G2(m, n), difference table of a(n):
1, -2, -3, -1, 3, 3, -9, -17, 51,...
-3, -1, 2, 4, 0, -12, -8, 68,...
2, 3, 2, -4, -12, 4, 76,...
1, -1, -6, -8, 16, 72,...
-2, -5, -2, 24, 56,...
-3, 3, 26, 32,...
6, 23, 6,...
17, -17,...
-34,...
etc.
The main diagonal G2(n,n) = 1, -1, 2, -8,... is essentially a signed version of A005439.
The first upper diagonal is the main diagonal multiplied by -2. G2(n, n+1) = -2*G2(n, n).
G2(m, n) = G2(m, n-1) + G2(m+1, n-1).
a(n) = (-1)^n*b(n) of A240485(n).
Inverse binomial transform: (-1)^n*A240485(n).
a(n) and A240485(n) are reciprocal. Like for instance (-1)^n and 2^n.

Crossrefs

Cf. A240485.

Programs

  • Maple
    A240677 := n -> `if`(n=0, 1, 6*Zeta(1-n)*n*(2^n-1) - Zeta(-n)*(n+1)*(2^(n+2)-2)); seq(A240677(n), n=0..24); # Peter Luschny, Apr 11 2014
  • Mathematica
    g[0] = 0; g[1] = -1; g[n_] := n*EulerE[n - 1, 0]; a[n_] := 3*g[n] - g[n + 1]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 10 2014 *)
  • PARI
    x = 'x+O('x^66);
    A = -2*exp(x)*(2*x+exp(x)*(3*x-1)-1)/(exp(x)+1)^2;
    Vec( serlaplace(A) )  /* Peter Luschny, Apr 10 2014 */

Formula

a(n) = 3*A226158(n) - A226158(n+1).
a(n+3) = -A001469(n+1).
a(2n+4) = -3*a(2n+3).
a(n) = A240485(n) + 5*A226158(n).
E.g.f.: -2*exp(x)*(2*x+exp(x)*(3*x-1)-1)/(exp(x)+1)^2. - Peter Luschny, Apr 10 2014

A278331 Shifted sequence of second differences of Genocchi numbers.

Original entry on oeis.org

0, -2, -2, 6, 14, -34, -138, 310, 1918, -4146, -36154, 76454, 891342, -1859138, -27891050, 57641238, 1080832286, -2219305810, -50833628826, 103886563462, 2853207760750, -5810302084962, -188424521441482, 382659344967926, 14464296482284734, -29311252309537394, -1277229462293249018
Offset: 0

Views

Author

Keywords

Comments

This is an autosequence of the first kind (array of successive differences shows typical zero diagonal).
Last digits are apparently of period 20.
From A226158(n) for the continuity of autosequences of the first kind.
b(n) = 0, 1, -1, 0, 1, 0, -3, 0, 17, ... = A226158(n) with 1 as second term instead of -1.
c(n) = 0, 0, -1, 0, 1, 0, -3, 0, 17, ... = A226158(n) with 0 as second term instead of -1.
Respective difference tables:
0, -1, -1, 0, 1, 0, -3, 0, 17, ...
-1, 0, 1, 1, -1, -3 , 3, 17, -17, ...
1, 1, 0, -2, -2, 6, 14, -34, -138, ...
etc,
0, 1, -1, 0, 1, 0, -3, 0, 17, ... = 0 followed by A036968(n+1)
1, -2, 1, 1, -1, -3, 3, 17, -17, ...
-3, 3, 0, -2, -2, 6, 14, -34, -138, ...
etc,
0, 0, -1, 0, 1, 0, -3, 0, 17, ...
0, -1, 1, 1, -1, -3, 3, 17, -17, ...
-1, 2, 0, -2, -2, 6, 14, -34, -138, ...
etc.
Since it is in the three tables, a(n) is the core of the Genocchi numbers.

Crossrefs

Cf. A001469, A014781, A036968, A005439 (a(n) second and third diagonals), A164555/A027642, A209308, A226158, A240581(n)/A239315(n) (core of Bernoulli numbers).

Programs

  • Mathematica
    g[0] = 0; g[1] = -1; g[n_] := n*EulerE[n-1, 0]; G = Table[g[n], {n, 0, 30}]; Drop[Differences[G, 2], 2]
    (* or, from Seidel's triangle A014781: *)
    max = 26; T[1, 1] = 1; T[n_, k_] /; 1 <= k <= (n + 1)/2 := T[n, k] = If[EvenQ[n], Sum[T[n - 1, i], {i, k, max}], Sum[T[n - 1, i], {i, 1, k}]]; T[, ] = 0; a[n_] := With[{k = Floor[(n - 1)/2] + 1}, (-1)^k*T[n + 3, k]]; Table[a[n], {n, 0, max}]

Formula

a(n) = (n+2)*E(n+1, 0) - 2*(n+3)*E(n+2, 0) + (n+4)*E(n+3, 0), where E(n,x) is the n-th Euler polynomial.
a(n) = -2*(2^(n+2)-1)*B(n+2) + 4*(2^(n+3)-1)*B(n+3) - 2*(2^(n+4)-1)*B(n+4), where B(n) is the n-th Bernoulli number.

A353921 a(n) = n if n < 4, otherwise floor(abs(z(n))) where z(n) = (2^(2*n + 1/2) - 1)*(4*n + 1)*zeta(1/2 - 2*n).

Original entry on oeis.org

0, 1, 2, 3, 20, 202, 2953, 58574, 1517830, 49788988, 2016610506, 98842394546, 5766037456673, 394787840828770, 31350291022336674, 2858009622374873775, 296454369597967332107, 34715387135986234970960, 4557676382296459474148951, 666708107998151285537770827
Offset: 0

Views

Author

Peter Luschny, May 14 2022

Keywords

Comments

a(n) gives an integer valued definition of what may be called a 'Genocchi half integer', i.e. it tries to give the expression 'G(n + 1/2)' a meaning, where G(n) = A110501(n) are the Genocchi numbers. Consider also the sequence of Genocchi median numbers A005439.

Crossrefs

Programs

  • Maple
    z := n -> (2^(2*n + 1/2) - 1)*(4*n + 1)*Zeta(1/2 - 2*n):
    a := n -> ifelse(n < 4, n, floor(abs(z(n)))):
    seq(floor(evalf(a(n))), n = 0..19);

Formula

A005439(n-1) <= a(n) <= A005439(n).
A110501(n) <= a(n) <= A110501(n+1).
a(n) ~ ((2*n)/(exp(1)*Pi))^(2*n)*(11/6 + 8*n - 23/(576*n)).

A362111 Related to shifted Genocchi medians.

Original entry on oeis.org

1, 1, 5, 41, 493, 8161, 178469, 4998905, 174914077, 7487810257, 385307632469, 23477954308841, 1672313866643917, 137703723643494721, 12981787835378567045, 1389285520249200892889, 167515121086596348291709, 22605814306270350503723185, 3393854148421455726168715445
Offset: 0

Views

Author

N. J. A. Sloane, Apr 14 2023

Keywords

Crossrefs

Cf. A005439.

Programs

  • Mathematica
    Rest@CoefficientList[Fold[#2/(1-#1)&,O[t],t Reverse@Table[Ceiling[n/2]^2,{n,20}]],t] (* Andrei Zabolotskii, Jul 09 2025 *)

Extensions

Terms a(10) onwards from Andrei Zabolotskii, Jul 09 2025
Previous Showing 21-25 of 25 results.