A229023
Numerators of the main diagonal of A225825 difference table, a sequence linked to Bernoulli, Genocchi and Clausen numbers.
Original entry on oeis.org
1, -2, 16, -424, 2944, -70240, 70873856, -212648576, 98650550272, -90228445612544, 19078660567134208, -2034677178643867648, 123160010212358914048, -19182197131374977024, 228111332170536254898176, -51166426240975948419354886144
Offset: 0
1, -2/3, 16/15, -424/105, 2944/105, -70240/231, 70873856/15015, ...
-
nmax = 30; Clausen[n_] := Times @@ Select[Divisors[n] + 1, PrimeQ]; t = Join[{1}, Table[Numerator[BernoulliB[n, 1/2] - (n + 1)*EulerE[n, 0]]/Clausen[n], {n, 1, nmax}]]; dt = Table[Differences[t, n], {n, 0, nmax}]; Diagonal[dt] // Numerator
A240677
a(n) = 6*Zeta(1-n)*n*(2^n-1) - Zeta(-n)*(n+1)*(2^(n+2)-2), for n = 0 the limit is understood.
Original entry on oeis.org
1, -2, -3, -1, 3, 3, -9, -17, 51, 155, -465, -2073, 6219, 38227, -114681, -929569, 2788707, 28820619, -86461857, -1109652905, 3328958715, 51943281731, -155829845193, -2905151042481, 8715453127443
Offset: 0
-
A240677 := n -> `if`(n=0, 1, 6*Zeta(1-n)*n*(2^n-1) - Zeta(-n)*(n+1)*(2^(n+2)-2)); seq(A240677(n), n=0..24); # Peter Luschny, Apr 11 2014
-
g[0] = 0; g[1] = -1; g[n_] := n*EulerE[n - 1, 0]; a[n_] := 3*g[n] - g[n + 1]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 10 2014 *)
-
x = 'x+O('x^66);
A = -2*exp(x)*(2*x+exp(x)*(3*x-1)-1)/(exp(x)+1)^2;
Vec( serlaplace(A) ) /* Peter Luschny, Apr 10 2014 */
A278331
Shifted sequence of second differences of Genocchi numbers.
Original entry on oeis.org
0, -2, -2, 6, 14, -34, -138, 310, 1918, -4146, -36154, 76454, 891342, -1859138, -27891050, 57641238, 1080832286, -2219305810, -50833628826, 103886563462, 2853207760750, -5810302084962, -188424521441482, 382659344967926, 14464296482284734, -29311252309537394, -1277229462293249018
Offset: 0
-
g[0] = 0; g[1] = -1; g[n_] := n*EulerE[n-1, 0]; G = Table[g[n], {n, 0, 30}]; Drop[Differences[G, 2], 2]
(* or, from Seidel's triangle A014781: *)
max = 26; T[1, 1] = 1; T[n_, k_] /; 1 <= k <= (n + 1)/2 := T[n, k] = If[EvenQ[n], Sum[T[n - 1, i], {i, k, max}], Sum[T[n - 1, i], {i, 1, k}]]; T[, ] = 0; a[n_] := With[{k = Floor[(n - 1)/2] + 1}, (-1)^k*T[n + 3, k]]; Table[a[n], {n, 0, max}]
A353921
a(n) = n if n < 4, otherwise floor(abs(z(n))) where z(n) = (2^(2*n + 1/2) - 1)*(4*n + 1)*zeta(1/2 - 2*n).
Original entry on oeis.org
0, 1, 2, 3, 20, 202, 2953, 58574, 1517830, 49788988, 2016610506, 98842394546, 5766037456673, 394787840828770, 31350291022336674, 2858009622374873775, 296454369597967332107, 34715387135986234970960, 4557676382296459474148951, 666708107998151285537770827
Offset: 0
-
z := n -> (2^(2*n + 1/2) - 1)*(4*n + 1)*Zeta(1/2 - 2*n):
a := n -> ifelse(n < 4, n, floor(abs(z(n)))):
seq(floor(evalf(a(n))), n = 0..19);
A362111
Related to shifted Genocchi medians.
Original entry on oeis.org
1, 1, 5, 41, 493, 8161, 178469, 4998905, 174914077, 7487810257, 385307632469, 23477954308841, 1672313866643917, 137703723643494721, 12981787835378567045, 1389285520249200892889, 167515121086596348291709, 22605814306270350503723185, 3393854148421455726168715445
Offset: 0
-
Rest@CoefficientList[Fold[#2/(1-#1)&,O[t],t Reverse@Table[Ceiling[n/2]^2,{n,20}]],t] (* Andrei Zabolotskii, Jul 09 2025 *)
Comments