cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 40 results. Next

A215643 n-th derivative of x^((x^(x^x))^x) at x=1.

Original entry on oeis.org

1, 1, 2, 15, 104, 890, 8814, 100660, 1288048, 18337680, 286674960, 4882660464, 89880715704, 1777384045944, 37552294300416, 843830334815640, 20086549955304384, 504750167170162944, 13348550475903813120, 370499740676381737728, 10766442934111876381440
Offset: 0

Views

Author

Alois P. Heinz, Aug 18 2012

Keywords

Comments

Also n-th derivative of x^((x^x)^(x^x)) = x^(x^(x^x*x)) at x=1.

Crossrefs

Column k=15 of A215703.

Programs

  • Maple
    a:= n-> n!*coeff(series(subs(x=x+1, x^((x^(x^x))^x) ), x, n+1), x, n):
    seq(a(n), n=0..30);
  • Mathematica
    m = 20;
    CoefficientList[(x+1)^(((x+1)^((x+1)^(x+1)))^(x+1)) + O[x]^(m+1), x]* Range[0, m]! (* Jean-François Alcover, Feb 07 2021 *)

Formula

E.g.f.: (x+1)^(((x+1)^((x+1)^(x+1)))^(x+1)).

A293472 Triangle read by rows, coefficients of polynomials in t = log(x) of the n-th derivative of x^x, evaluated at x = 1. T(n, k) with n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 3, 6, 3, 1, 8, 12, 12, 4, 1, 10, 40, 30, 20, 5, 1, 54, 60, 120, 60, 30, 6, 1, -42, 378, 210, 280, 105, 42, 7, 1, 944, -336, 1512, 560, 560, 168, 56, 8, 1, -5112, 8496, -1512, 4536, 1260, 1008, 252, 72, 9, 1
Offset: 0

Views

Author

Peter Luschny, Oct 10 2017

Keywords

Examples

			Triangle starts:
0: [  1]
1: [  1,   1]
2: [  2,   2,   1]
3: [  3,   6,   3,   1]
4: [  8,  12,  12,   4,   1]
5: [ 10,  40,  30,  20,   5,  1]
6: [ 54,  60, 120,  60,  30,  6, 1]
7: [-42, 378, 210, 280, 105, 42, 7, 1]
...
For n = 3, the 3rd derivative of x^x is p(3,x,t) = x^x*t^3 + 3*x^x*t^2 + 3*x^x*t + x^x + 3*x^x*t/x + 3*x^x/x - x^x/x^2 where log(x) is substituted by t. Evaluated at x = 1: p(3,1,t) = 3 + 6*t + 3*t^2 + t^3 with coefficients [3, 6, 3, 1].
		

Crossrefs

More generally, consider the n-th derivative of x^(x^m). This is case m = 1.
m | t = -1 | t = 0 | t = 1 | p(n, t) | related
m = 2 | - | A215524 | - | A293473 | A290268
m = 3 | - | A215704 | - | A293474 | -
Cf. A215703.

Programs

  • Maple
    dx := proc(m, n) if n = 0 then return [1] fi;
    subs(ln(x) = t, diff(x^(x^m), x$n)): subs(x = 1, %):
    PolynomialTools:-CoefficientList(%,t) end:
    ListTools:-Flatten([seq(dx(1, n), n=0..10)]);
  • Mathematica
    dx[m_, n_] := ReplaceAll[CoefficientList[ReplaceAll[Expand[D[x^x^m, {x, n}]], Log[x] -> t], t], x -> 1];
    Table[dx[1, n], {n, 0, 7}] // Flatten

A215629 n-th derivative of x^(x^((x^x)^x)) at x=1.

Original entry on oeis.org

1, 1, 2, 9, 80, 660, 6714, 77084, 1005640, 14572944, 233086920, 4066783512, 76906345944, 1566049091568, 34153725715368, 793996577407560, 19595885746343808, 511550462381982528, 14080034085212120256, 407434430977558009344, 12363449947108075756800
Offset: 0

Views

Author

Alois P. Heinz, Aug 18 2012

Keywords

Crossrefs

Column k=16 of A215703.

Programs

  • Maple
    a:= n-> n!*coeff(series(subs(x=x+1, x^(x^((x^x)^x)) ), x, n+1), x, n):
    seq(a(n), n=0..30);
  • Mathematica
    m = 20;
    CoefficientList[(x+1)^((x+1)^(((x+1)^(x+1))^(x+1))) + O[x]^(m+1), x]* Range[0, m]! (* Jean-François Alcover, Feb 07 2021 *)

Formula

E.g.f: (x+1)^((x+1)^(((x+1)^(x+1))^(x+1))).

A215691 n-th derivative of (x^x)^(x^(x^x)) at x=1.

Original entry on oeis.org

1, 1, 4, 18, 124, 950, 8688, 89600, 1038392, 13309272, 186471480, 2837173152, 46466835072, 815532508440, 15246845864040, 302533865599800, 6344720827608384, 140208886623418752, 3254819745378435264, 79172189409906466560, 2013138139856523598080
Offset: 0

Views

Author

Alois P. Heinz, Aug 20 2012

Keywords

Comments

Also n-th derivative of (x^(x^(x^x)))^x = x^(x^(x^x)*x) at x=1.

Crossrefs

Programs

  • Maple
    a:= n-> n!*coeff(series(subs(x=x+1, (x^x)^(x^(x^x))), x, n+1), x, n):
    seq(a(n), n=0..30);
  • Mathematica
    m = 20;
    CoefficientList[(x+1)^((x+1)^((x+1)^(x+1)+1)) + O[x]^(m+1), x]*Range[0, m]! (* Jean-François Alcover, Feb 07 2021 *)

Formula

E.g.f.: (x+1)^((x+1)^((x+1)^(x+1)+1)).

A215705 n-th derivative of x^((x^x)^x) at x=1.

Original entry on oeis.org

1, 1, 2, 15, 80, 590, 5034, 47110, 511216, 6019416, 77899320, 1092871824, 16459538952, 265695302808, 4560878625744, 83020743848760, 1595943389477760, 32291354360340672, 685838983512807360, 15248888357184824256, 354130117874225585280, 8571971677758345319680
Offset: 0

Views

Author

Alois P. Heinz, Aug 21 2012

Keywords

Comments

Also n-th derivative of x^(x^(x^2)) at x=1.
First term < 0: a(272).

Crossrefs

Column k=7 of A215703.

Programs

  • Maple
    a:= n-> n!*coeff(series(subs(x=x+1, x^((x^x)^x) ), x, n+1), x, n):
    seq(a(n), n=0..25);
  • Mathematica
    With[{nn=30},CoefficientList[Series[(x+1)^((x+1)^((x+1)^2)),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Nov 30 2013 *)

Formula

E.g.f.: (x+1)^((x+1)^((x+1)^2)).

A215706 n-th derivative of (((x^x)^x)^x)^x at x=1.

Original entry on oeis.org

1, 1, 8, 48, 344, 3160, 31776, 349440, 4270304, 56343456, 794577600, 11975388480, 191431339392, 3225851451264, 57152333898240, 1061030230525440, 20569247105571840, 415385999498849280, 8719401647417757696, 189836589049809334272, 4278839631584572661760
Offset: 0

Views

Author

Alois P. Heinz, Aug 21 2012

Keywords

Comments

Also n-th derivative of x^(x^4) at x=1.
First term < 0: a(130).

Crossrefs

Column k=9 of A215703.

Programs

  • Maple
    a:= n-> n!*coeff(series(subs(x=x+1, (((x^x)^x)^x)^x ), x, n+1), x, n):
    seq(a(n), n=0..25);

Formula

E.g.f.: (x+1)^((x+1)^4).

A215707 n-th derivative of ((x^x)^x)^(x^x) at x=1.

Original entry on oeis.org

1, 1, 6, 33, 228, 1880, 17742, 187124, 2176360, 27617616, 378764280, 5574170712, 87491513304, 1457433784560, 25654258467432, 475431102931080, 9246150139382400, 188172595998890688, 3997389233216787264, 88440294467474068608, 2033755519425292281600
Offset: 0

Views

Author

Alois P. Heinz, Aug 21 2012

Keywords

Comments

Also n-th derivative of ((x^(x^x))^x)^x, ((x^x)^(x^x))^x, x^(x^x*x^2) at x=1.
First term < 0: a(152).

Crossrefs

Column k=10 of A215703.

Programs

  • Maple
    a:= n-> n!*coeff(series(subs(x=x+1, x^(x^x*x^2) ), x, n+1), x, n):
    seq(a(n), n=0..25);

Formula

E.g.f.: (x+1)^((x+1)^(x+3)).

A215708 n-th derivative of (x^(x^x))^(x^x) at x=1.

Original entry on oeis.org

1, 1, 4, 24, 148, 1180, 10428, 106876, 1198160, 14843808, 198832320, 2877693984, 44545268832, 734929736736, 12852051257472, 237372559264320, 4614124211454720, 94103610003019008, 2008507968212696064, 44748953208031094784, 1038646472528272158720
Offset: 0

Views

Author

Alois P. Heinz, Aug 21 2012

Keywords

Comments

Also n-th derivative of x^((x^x)^2) at x=1.
First term < 0: a(175).

Crossrefs

Column k=11 of A215703.

Programs

  • Maple
    a:= n-> n!*coeff(series(subs(x=x+1, x^((x^x)^2) ), x, n+1), x, n):
    seq(a(n), n=0..25);

Formula

E.g.f.: (x+1)^((x+1)^(2*x+2)).

A215709 n-th derivative of (x^x)^((x^x)^x) at x=1.

Original entry on oeis.org

1, 1, 4, 24, 172, 1420, 13968, 154336, 1914288, 26108208, 388596960, 6251899104, 108088087776, 1995840455232, 39183950494752, 814399382073120, 17856182764554240, 411671923447488768, 9952212794293198080, 251646630845685827328, 6640389412581544588800
Offset: 0

Views

Author

Alois P. Heinz, Aug 21 2012

Keywords

Comments

Also n-th derivative of (x^((x^x)^x))^x = x^(x^(x^2)*x) at x=1.

Crossrefs

Column k=12 of A215703.

Programs

  • Maple
    a:= n-> n!*coeff(series(subs(x=x+1, x^(x^(x^2)*x) ), x, n+1), x, n):
    seq(a(n), n=0..25);

Formula

E.g.f.: (x+1)^((x+1)^(x^2+2*x+2)).

A215710 n-th derivative of x^(((x^x)^x)^x) at x=1.

Original entry on oeis.org

1, 1, 2, 21, 152, 1360, 15174, 184296, 2538584, 39097296, 656793720, 12021152616, 237610299288, 5033625978576, 113810068532328, 2733480292962600, 69463846973884800, 1861656629684769600, 52458209090931835584, 1549997983761108724224, 47908467697220966937600
Offset: 0

Views

Author

Alois P. Heinz, Aug 21 2012

Keywords

Comments

Also n-th derivative of x^(x^(x^3)) at x=1.

Crossrefs

Column k=14 of A215703.

Programs

  • Maple
    a:= n-> n!*coeff(series(subs(x=x+1, x^(x^(x^3)) ), x, n+1), x, n):
    seq(a(n), n=0..25);

Formula

E.g.f.: (x+1)^((x+1)^((x+1)^3)).
Previous Showing 21-30 of 40 results. Next